找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian

[复制链接]
楼主: ominous
发表于 2025-3-26 22:50:29 | 显示全部楼层
发表于 2025-3-27 03:38:53 | 显示全部楼层
发表于 2025-3-27 07:27:39 | 显示全部楼层
发表于 2025-3-27 12:36:36 | 显示全部楼层
Structural Equations. Local Symmetries,As we know (see Chap. 36), instead of the curvature tensor, it is convenient to consider the ..
发表于 2025-3-27 13:59:38 | 显示全部楼层
发表于 2025-3-27 20:32:13 | 显示全部楼层
Lie Functor,The main goal of this chapter is to present the procedure for reconstructing a Lie group from its Lie algebra. Moreover, incidentally, we here present certain general mathematical concepts that were already mentioned repeatedly in passing.
发表于 2025-3-28 01:51:21 | 显示全部楼层
Affine Fields and Related Topics,As Exercise 5.5 shows, Lie groups are a particular case of symmetric spaces. This gives us an idea to generalize the construction of the Lie algebra of a Lie group to symmetric spaces. This can be done, but instead of Lie algebras, we obtain more general algebraic objects, as should be expected.
发表于 2025-3-28 03:53:59 | 显示全部楼层
Cartan Theorem,The Lie ternary . constructed in the previous chapter depends on the choice of the point .0∈., i.e., it is a function of the pair (.0). Such pairs are called .. A .: (.0) → (.0) of punctured spaces is a morphism . → . such that .(.0) = .0. It is clear that all punctured symmetric spaces and their morphisms form a category.
发表于 2025-3-28 06:50:31 | 显示全部楼层
Metric Properties of Geodesics,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by
发表于 2025-3-28 13:37:14 | 显示全部楼层
Minimal Surfaces,We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表