找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian

[复制链接]
楼主: ominous
发表于 2025-3-30 10:21:54 | 显示全部楼层
Hexameter und elegisches Distichon, not using local coordinates. Each smooth function . on . × . and each point . ∈ . define the smooth function . on . (.). We can use this to set the vector field .. on . × . in correspondence with each vector field . on ., defining its action on an arbitrary function . ∈ .(. × .) by
发表于 2025-3-30 15:14:46 | 显示全部楼层
Aufbereitung fester Abfallstoffe,bitrary linear topological space .. This allows defining .. in an obvious way: it suffices to replace open sets of the space ℝ. with those of the space . everywhere in the usual definition of a smooth manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc., manifolds depending o
发表于 2025-3-30 19:54:55 | 显示全部楼层
发表于 2025-3-30 23:45:22 | 显示全部楼层
Schallempfang und Schallaufzeichnung,.) be an arbitrary chart of an arbitrary (pseudo-)Riemannian space ., let ||..|| be the matrix of components of the metric tensor . in the chart (.), and let . be its determinant. The transformation formula for the matrix of a quadratic form under a change of basis directly implies that under a chan
发表于 2025-3-31 01:19:21 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .
发表于 2025-3-31 06:58:50 | 显示全部楼层
发表于 2025-3-31 12:55:52 | 显示全部楼层
发表于 2025-3-31 13:37:48 | 显示全部楼层
发表于 2025-3-31 21:31:55 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 12:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表