找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian

[复制链接]
查看: 36767|回复: 58
发表于 2025-3-21 19:50:19 | 显示全部楼层 |阅读模式
书目名称Geometry VI
副标题Riemannian Geometry
编辑M. M. Postnikov
视频video
概述A well-written introduction to the subject.Includes supplementary material:
丛书名称Encyclopaedia of Mathematical Sciences
图书封面Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian
描述The original Russian edition of this book is the fifth in my series "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summarized without proofs as a rule. In the original edition, the book is divided not into chapters but into lec­ tures. This is explained by its origin as classroom lectures that I gave. The principal distinction between chapters and lectures is that the material of each chapter should be complete to a certain extent and the length of chapters can differ, while, in contrast, all lectures should be approximately the same in length and the topic of any lecture can change suddenly in the middle. For the series "Encyclopedia of Mathematical Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first
出版日期Textbook 2001
关键词Lie groups; Minimal surface; Riemannian geometry; connections; differential geometry; manifold; symmetric
版次1
doihttps://doi.org/10.1007/978-3-662-04433-9
isbn_softcover978-3-642-07434-9
isbn_ebook978-3-662-04433-9Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Geometry VI影响因子(影响力)




书目名称Geometry VI影响因子(影响力)学科排名




书目名称Geometry VI网络公开度




书目名称Geometry VI网络公开度学科排名




书目名称Geometry VI被引频次




书目名称Geometry VI被引频次学科排名




书目名称Geometry VI年度引用




书目名称Geometry VI年度引用学科排名




书目名称Geometry VI读者反馈




书目名称Geometry VI读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:35:24 | 显示全部楼层
发表于 2025-3-22 01:32:48 | 显示全部楼层
发表于 2025-3-22 05:38:54 | 显示全部楼层
发表于 2025-3-22 11:38:55 | 显示全部楼层
发表于 2025-3-22 15:49:39 | 显示全部楼层
发表于 2025-3-22 19:53:00 | 显示全部楼层
0938-0396 ies "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summ
发表于 2025-3-22 23:48:40 | 显示全部楼层
https://doi.org/10.1007/978-3-642-86493-3ix . = .. (matrix .= ..) of connection forms. The connection ∇. sets the horizontal subspace .. of the tangent space ..(..) in correspondence with each tangent vector . (point of the total space .. of the tangent bundle .). Similarly, the connection ∇. sets the horizontal subspace .. ⊂ .. (..) in correspondence with each point . ∈ ...
发表于 2025-3-23 02:59:33 | 显示全部楼层
发表于 2025-3-23 06:30:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 11:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表