找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The

[复制链接]
楼主: CAP
发表于 2025-3-28 16:41:54 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-9996-2date, several SRAM/ReRAM-based IMC hardware architectures to accelerate ML applications have been proposed in the literature. However, crossbar-based IMC hardware poses several design challenges. In this chapter, we first describe different machine learning algorithms adopted in the literature recen
发表于 2025-3-28 19:04:04 | 显示全部楼层
Meiofauna Sampling and Processing,tance for training ML models. With this comes the challenge of overall efficient deployment, in particular low-power and high-throughput implementations, under stringent memory constraints. In this context, non-volatile memory (NVM) technologies such as spin-transfer torque magnetic random access me
发表于 2025-3-28 23:09:32 | 显示全部楼层
发表于 2025-3-29 05:45:00 | 显示全部楼层
The Earlier Cytological Investigations,he increasing memory intensity of most DNN workloads, main memory can dominate the system’s energy consumption and stall time. One effective way to reduce the energy consumption and increase the performance of DNN inference systems is by using approximate memory, which operates with reduced supply v
发表于 2025-3-29 08:17:56 | 显示全部楼层
发表于 2025-3-29 13:18:11 | 显示全部楼层
发表于 2025-3-29 19:37:08 | 显示全部楼层
Geschichtliche Perspektiven der Problemlage,CPUs and GPUs. Such accelerators are thus well suited for resource-constrained embedded systems. However, mapping sophisticated neural network models on these accelerators still entails significant energy and memory consumption, along with high inference time overhead. Binarized neural networks (BNN
发表于 2025-3-29 22:59:10 | 显示全部楼层
发表于 2025-3-30 02:57:54 | 显示全部楼层
https://doi.org/10.1007/978-3-031-19568-6Machine learning embedded systems; Machine learning IoT; Machine learning edge computing; Smart Cyber-P
发表于 2025-3-30 07:32:53 | 显示全部楼层
978-3-031-19570-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 02:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表