找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The

[复制链接]
楼主: CAP
发表于 2025-3-25 04:00:52 | 显示全部楼层
Light Speed Machine Learning Inference on the Edgee level, explore efficient corrective tuning for these devices, and integrate circuit-level optimization to counter thermal variations. As a result, the proposed . architecture possesses the desirable traits of being robust, energy-efficient, low latency, and high throughput, when executing BNN mode
发表于 2025-3-25 11:04:10 | 显示全部楼层
发表于 2025-3-25 15:21:20 | 显示全部楼层
on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits..978-3-031-19570-9978-3-031-19568-6
发表于 2025-3-25 19:52:19 | 显示全部楼层
https://doi.org/10.1007/978-3-662-32788-3output activations), thereby enabling our MPNA to operate under low power, while achieving high performance and energy efficiency. We synthesize our MPNA accelerator using the ASIC design flow for a 28-nm technology and perform functional and timing validation using real-world CNNs. Our MPNA achieve
发表于 2025-3-25 23:20:52 | 显示全部楼层
发表于 2025-3-26 01:00:07 | 显示全部楼层
发表于 2025-3-26 06:41:03 | 显示全部楼层
https://doi.org/10.1007/978-3-658-38198-1thodology employs an exploration technique to find the data partitioning and scheduling that offer minimum DRAM accesses for the given DNN model and exploits the low latency DRAMs to efficiently perform data accesses that incur minimum DRAM access energy.
发表于 2025-3-26 08:38:42 | 显示全部楼层
Meiofauna Sampling and Processing,rning (DL) applications by combining technology-specific circuit-level models and the actual memory behavior of various DL workloads. . relies on . and . performance and energy models for last-level caches implemented using conventional SRAM and emerging STT-MRAM and SOT-MRAM technologies. In the is
发表于 2025-3-26 16:13:50 | 显示全部楼层
发表于 2025-3-26 18:14:28 | 显示全部楼层
The Earlier Cytological Investigations, DRAM. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)), Koppula S et al ((2019) EDEN: Enabling energy-efficient, high-performance deep neural network inference using approximate DRAM. arXiv), a recent work that uses this observation to realize higher
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 02:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表