找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The

[复制链接]
查看: 43874|回复: 51
发表于 2025-3-21 19:57:42 | 显示全部楼层 |阅读模式
书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing
副标题Hardware Architectur
编辑Sudeep Pasricha,Muhammad Shafique
视频video
概述Discusses efficient implementation of machine learning in embedded, CPS, IoT, and edge computing.Offers comprehensive coverage of hardware design, software design, and hardware/software co-design and
图书封面Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The
描述.This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits..
出版日期Book 2024
关键词Machine learning embedded systems; Machine learning IoT; Machine learning edge computing; Smart Cyber-P
版次1
doihttps://doi.org/10.1007/978-3-031-19568-6
isbn_softcover978-3-031-19570-9
isbn_ebook978-3-031-19568-6
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影响因子(影响力)




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing影响因子(影响力)学科排名




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing网络公开度




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing网络公开度学科排名




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引频次




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing被引频次学科排名




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing年度引用学科排名




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing读者反馈




书目名称Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:21:06 | 显示全部楼层
https://doi.org/10.1007/978-3-662-68073-5 neural networks can be accelerated in an energy-efficient manner. In particular, we focus on design considerations and trade-offs for mapping CNNs, Transformers, and GNNs on AI accelerators that attempt to maximize compute efficiency and minimize energy consumption by reducing the number of access to memory through efficient data reuse.
发表于 2025-3-22 03:22:25 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-9996-2are. Thereafter, we discuss different interconnect techniques for IMC architectures proposed in the literature. Finally, different performance evaluation techniques for IMC architectures are described. We conclude the chapter with a summary and future avenues for IMC architectures for ML acceleration.
发表于 2025-3-22 06:02:10 | 显示全部楼层
Low- and Mixed-Precision Inference Acceleratorsd, all aiming at enabling neural network inference at the edge. In this chapter, design choices and their implications on the flexibility and energy efficiency of several accelerators supporting extremely quantized networks are reviewed.
发表于 2025-3-22 12:15:42 | 显示全部楼层
发表于 2025-3-22 14:27:08 | 显示全部楼层
In-Memory Computing for AI Accelerators: Challenges and Solutionsare. Thereafter, we discuss different interconnect techniques for IMC architectures proposed in the literature. Finally, different performance evaluation techniques for IMC architectures are described. We conclude the chapter with a summary and future avenues for IMC architectures for ML acceleration.
发表于 2025-3-22 19:18:15 | 显示全部楼层
发表于 2025-3-23 00:56:32 | 显示全部楼层
发表于 2025-3-23 02:50:56 | 显示全部楼层
发表于 2025-3-23 07:20:08 | 显示全部楼层
Embedded Machine Learning for Cyber-Physical, IoT, and Edge ComputingHardware Architectur
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 23:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表