用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing; Hardware Architectur Sudeep Pasricha,Muhammad Shafique Book 2024 The

[复制链接]
楼主: CAP
发表于 2025-3-23 10:22:37 | 显示全部楼层
发表于 2025-3-23 17:30:40 | 显示全部楼层
发表于 2025-3-23 20:04:17 | 显示全部楼层
Photonic NoCs for Energy-Efficient Data-Centric Computing framework can achieve up to 56.4% lower laser-power consumption and up to 23.8% better energy-efficiency than the best-known prior work on approximate communication with silicon photonic interconnects and for the same application output quality.
发表于 2025-3-23 22:37:42 | 显示全部楼层
Designing Resource-Efficient Hardware Arithmetic for FPGA-Based Accelerators Leveraging Approximatioods and delve into the details of selected works that report considerable improvements in this regard. Specifically, we cover custom optimizations for both accurate and approximate multiplier designs and MAC units employing mixed quantization of Posit and fixed-point/integer number representations.
发表于 2025-3-24 04:10:52 | 显示全部楼层
发表于 2025-3-24 07:49:48 | 显示全部楼层
发表于 2025-3-24 10:40:51 | 显示全部楼层
发表于 2025-3-24 17:55:16 | 显示全部楼层
发表于 2025-3-24 21:55:14 | 显示全部楼层
On-Chip DNN Training for Direct Feedback Alignment in FeFETer improve the power efficiency, we identify two architectural challenges unique to DFA-based training: a low-cost on-chip random number generator and an efficient analog-to-digital converter (ADC). We then propose a random number generator based on the statistical switching in FeFETs and an ultra-l
发表于 2025-3-25 01:27:21 | 显示全部楼层
Platform-Based Design of Embedded Neuromorphic Systemsuse of the system software for many different hardware platforms. We describe how platform-based design methodologies can be applied to neuromorphic system design. Specifically, we show that a given system software framework can be optimized to achieve performance, energy, and reliability goals of a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-6 22:48
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表