找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning to Quantify; Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)

[复制链接]
楼主: 尖酸好
发表于 2025-3-27 00:08:07 | 显示全部楼层
发表于 2025-3-27 05:04:44 | 显示全部楼层
发表于 2025-3-27 07:06:55 | 显示全部楼层
The Case for Quantification,ons and their estimation, dataset shift, and the various subtypes of dataset shift which are relevant to the quantification endeavour. In this chapter we also argue why using classification techniques for estimating class distributions is suboptimal, and we then discuss why learning to quantify has
发表于 2025-3-27 11:05:35 | 显示全部楼层
发表于 2025-3-27 16:01:53 | 显示全部楼层
发表于 2025-3-27 17:47:57 | 显示全部楼层
Methods for Learning to Quantify, proposed over the years. These methods belong to two main categories, depending on whether they have an aggregative nature (i.e., they require the classification of all individual unlabelled items as an intermediate step) or a non-aggregative nature (i.e., they perform no classification of individu
发表于 2025-3-28 00:24:41 | 显示全部楼层
发表于 2025-3-28 05:31:54 | 显示全部楼层
The Quantification Landscape, of quantification research, from its beginnings to the most recent quantification-based “shared tasks”; the landscape of quantification-based, publicly available software libraries; visualization tools specifically oriented to displaying the results of quantification-based experiments; and other ta
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 16:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表