找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning to Quantify; Andrea Esuli,Alessandro Fabris,Fabrizio Sebastiani Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s)

[复制链接]
楼主: 尖酸好
发表于 2025-3-25 05:35:33 | 显示全部楼层
The Case for Quantification, we also argue why using classification techniques for estimating class distributions is suboptimal, and we then discuss why learning to quantify has evolved as a task of its own, rather than remaining a by-product of classification.
发表于 2025-3-25 07:35:14 | 显示全部楼层
发表于 2025-3-25 12:55:06 | 显示全部楼层
发表于 2025-3-25 15:49:40 | 显示全部楼层
Advanced Topics,ntification for networked data, and quantification for streaming data. The chapter ends with a discussion on how to derive confidence intervals for the class prevalence estimates returned by quantification systems.
发表于 2025-3-25 20:59:16 | 显示全部楼层
发表于 2025-3-26 02:27:39 | 显示全部楼层
发表于 2025-3-26 07:01:08 | 显示全部楼层
发表于 2025-3-26 11:42:53 | 显示全部楼层
发表于 2025-3-26 12:40:10 | 显示全部楼层
Andrea Esuli,Alessandro Fabris,Alejandro Moreo,Fabrizio Sebastianile that are not part of their local community. In some cases, young people feel that belonging to online communities may serve as a refuge, a safe and stable place, in a modern society where everything else is moving. In this chapter we analyze how a sense of belonging develops for young members of
发表于 2025-3-26 19:13:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 16:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表