找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[复制链接]
楼主: Flexible
发表于 2025-3-26 23:44:50 | 显示全部楼层
发表于 2025-3-27 03:25:17 | 显示全部楼层
Planungsrelevante Definitionen, of a manifold with an almost complex structure is CR, by Bejancu, if it has a differentiable holomorphic distribution . such that its orthogonal complement . is a totally real distribution. A CR-submanifolds of . has to be at least three-dimensional, so with disregarding the hypersurfaces which are
发表于 2025-3-27 08:52:48 | 显示全部楼层
发表于 2025-3-27 12:25:22 | 显示全部楼层
,Der Gelenk- oder Gerberträger,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold
发表于 2025-3-27 15:01:01 | 显示全部楼层
发表于 2025-3-27 20:18:07 | 显示全部楼层
,Die einfachsten statisch bestimmten Träger,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
发表于 2025-3-27 22:03:00 | 显示全部楼层
Einfache lineare Regression — II . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
发表于 2025-3-28 04:46:19 | 显示全部楼层
Grundbegriffe statistischer Testss compatible with the Hermitian structure, we recall the results on mixed foliate, normal mixed totally geodesic and totally umbilical CR-submanifolds of a Kaehler manifold. Finally, CR-submanifolds have been studied within the frame-work of space-time (in particular, of general relativity).
发表于 2025-3-28 06:38:34 | 显示全部楼层
发表于 2025-3-28 10:40:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 03:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表