找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[复制链接]
查看: 29055|回复: 54
发表于 2025-3-21 19:13:25 | 显示全部楼层 |阅读模式
书目名称Geometry of Cauchy-Riemann Submanifolds
编辑Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al-
视频video
概述Presents a collection of reports on the most recent results on CR submanifolds in various ambient spaces.Explores the applications of CR geometry, and in particular the theory of CR submanifolds, to o
图书封面Titlebook: Geometry of Cauchy-Riemann Submanifolds;  Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing
描述.This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds..Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike..
出版日期Book 2016
关键词CR-submanifolds; Kaehler manifold; Sasakian manifolds; Cauchy–Riemann structure; Semi-Riemannian submers
版次1
doihttps://doi.org/10.1007/978-981-10-0916-7
isbn_softcover978-981-10-9283-1
isbn_ebook978-981-10-0916-7
copyrightSpringer Science+Business Media Singapore 2016
The information of publication is updating

书目名称Geometry of Cauchy-Riemann Submanifolds影响因子(影响力)




书目名称Geometry of Cauchy-Riemann Submanifolds影响因子(影响力)学科排名




书目名称Geometry of Cauchy-Riemann Submanifolds网络公开度




书目名称Geometry of Cauchy-Riemann Submanifolds网络公开度学科排名




书目名称Geometry of Cauchy-Riemann Submanifolds被引频次




书目名称Geometry of Cauchy-Riemann Submanifolds被引频次学科排名




书目名称Geometry of Cauchy-Riemann Submanifolds年度引用




书目名称Geometry of Cauchy-Riemann Submanifolds年度引用学科排名




书目名称Geometry of Cauchy-Riemann Submanifolds读者反馈




书目名称Geometry of Cauchy-Riemann Submanifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:37:19 | 显示全部楼层
发表于 2025-3-22 00:44:04 | 显示全部楼层
Book 2016verview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike..
发表于 2025-3-22 06:42:16 | 显示全部楼层
发表于 2025-3-22 12:48:50 | 显示全部楼层
发表于 2025-3-22 15:34:39 | 显示全部楼层
发表于 2025-3-22 19:24:31 | 显示全部楼层
发表于 2025-3-22 21:52:44 | 显示全部楼层
发表于 2025-3-23 01:23:31 | 显示全部楼层
Submanifold Theory in Holomorphic Statistical Manifolds,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold
发表于 2025-3-23 08:46:53 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 03:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表