找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[复制链接]
楼主: Flexible
发表于 2025-3-23 13:32:54 | 显示全部楼层
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
发表于 2025-3-23 17:15:43 | 显示全部楼层
Submersions of CR Submanifolds, . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
发表于 2025-3-23 21:11:42 | 显示全部楼层
发表于 2025-3-24 01:57:26 | 显示全部楼层
Paraquaternionic CR-Submanifolds,ebra of paraquaternionic numbers. The counterpart in odd dimension of a paraquaternionic structure was introduced in 2006 by S. Ianuş, R. Mazzocco and G.E. Vîlcu and is referred to as a mixed 3-structure. It appears in a natural way on lightlike hypersurfaces in paraquaternionic manifolds. In this p
发表于 2025-3-24 04:59:55 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-3582-2We exhibit the relationship between the second fundamental form and the Levi form of a CR submanifold . (in the sense of A. Bejancu, [.]) in a Hermitian (e.g., Kählerian or locally conformal Kähler) manifold . and start a study of the CR extension problem from . to ..
发表于 2025-3-24 09:37:27 | 显示全部楼层
发表于 2025-3-24 11:39:16 | 显示全部楼层
,Der Gelenk- oder Gerberträger,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
发表于 2025-3-24 18:15:28 | 显示全部楼层
发表于 2025-3-24 22:02:35 | 显示全部楼层
发表于 2025-3-25 02:56:14 | 显示全部楼层
CR-Doubly Warped Product Submanifolds,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 03:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表