找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Robotics; Workshop, Toulouse, J. -D. Boissonnat,J. -P. Laumond Conference proceedings 1989 Springer-Verlag Berlin Heidelberg

[复制链接]
楼主: Malnutrition
发表于 2025-3-30 09:27:38 | 显示全部楼层
发表于 2025-3-30 12:32:36 | 显示全部楼层
Motion from point matches: multiplicity of solutions,en around in the Computer Vision community for a while. We present two approaches:.We then describe a computer implementation of the second approach that uses MAPLE, a language for symbolic computation. The program allows us to exactly compute the solutions for any configurations of 5 points. Some preliminary experiments are described.
发表于 2025-3-30 18:57:01 | 显示全部楼层
An optimal algorithm for the boundary of a cell in a union of rays,an algorithm for constructing the boundary of any cell, which runs in optimal Θ(. log .) time. A byproduct of our results are the notions of skeleton and of skeletal order, which may be of interest in their own right.
发表于 2025-3-30 23:09:31 | 显示全部楼层
Modelling positioning uncertainties,o verify the validity of a program afterwards..In this paper, two methods were developped to represent uncertainties in robotics. Both methods have been implemented: one at LIFIA (Grenoble France), the other at LAAS (Toulouse France).
发表于 2025-3-31 04:20:04 | 显示全部楼层
发表于 2025-3-31 06:08:56 | 显示全部楼层
https://doi.org/10.1007/978-3-663-16045-8divide and conquer algorithm for triangulating arbitrary set of points is also presented. This algorithm is based on a splitting theorem which has been proved independently by Avis and ElGindy on one side and Edelsbrunner, Preparata and West on the other side.
发表于 2025-3-31 12:48:35 | 显示全部楼层
https://doi.org/10.1007/978-3-322-80096-1jecture. We provide an example to show that the Hamiltonian cycles in a Delaunay complex may not generate all non-degenerate geometric realizations of Delaunay complexes. That is, there are geometric realizations of Delaunay complexes that are not convex sums of Hamiltonian cycles.
发表于 2025-3-31 15:28:54 | 显示全部楼层
Effective semialgebraic geometry,ral method (surely too general to be efficient in practice) for robot motion planning. The techniques and results presented here have no pretention to originality. The references given at the end of the paper are just a sample of the literature on the subject, far from being exhaustive.
发表于 2025-3-31 20:50:40 | 显示全部楼层
Triangulation in 2D and 3D space,divide and conquer algorithm for triangulating arbitrary set of points is also presented. This algorithm is based on a splitting theorem which has been proved independently by Avis and ElGindy on one side and Edelsbrunner, Preparata and West on the other side.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-3 17:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表