找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[复制链接]
楼主: Harrison
发表于 2025-3-30 09:38:33 | 显示全部楼层
发表于 2025-3-30 13:04:18 | 显示全部楼层
发表于 2025-3-30 16:43:28 | 显示全部楼层
Oriol T. Valls,Zlatko Tesanovicect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
发表于 2025-3-30 22:18:05 | 显示全部楼层
E. Krotscheck,J. L. Epstein,M. Saarelart introduction to this subject. We end this chapter with important theorems used in the approximation and convergence results proved in the succeeding parts of the book. A nice introduction to this subject can be found in [63].
发表于 2025-3-31 02:29:14 | 显示全部楼层
发表于 2025-3-31 06:25:26 | 显示全部楼层
M. A. Rao,D. A. Rao,K. R. D. Royhat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 12:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表