找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[复制链接]
楼主: Harrison
发表于 2025-3-23 09:45:22 | 显示全部楼层
发表于 2025-3-23 15:19:09 | 显示全部楼层
R. F. Bishop,J. B. Parkinson,Yang Xianiant forms described in Chap. 19 have a typical Riemannian flavor. That is why we give a brief survey of Riemannian geometry. The reader interested in the subject can consult [10], [29], [76], [57, Tome 1, Chaps. 4 and 5], or [67].
发表于 2025-3-23 20:42:06 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-0843-9rea of a sequence of triangulations inscribed in a fixed cylinder of E. may tend to infinity when the sequence tends to the cylinder for the Hausdorff topology. We give here a general . by adding a suitable geometric assumption: we assume that the tangent bundle of the sequence tends to the tangent bundle of ., in precise sense.
发表于 2025-3-24 00:04:22 | 显示全部楼层
Book 2008calar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with re
发表于 2025-3-24 02:26:04 | 显示全部楼层
Background on Riemannian Geometryiant forms described in Chap. 19 have a typical Riemannian flavor. That is why we give a brief survey of Riemannian geometry. The reader interested in the subject can consult [10], [29], [76], [57, Tome 1, Chaps. 4 and 5], or [67].
发表于 2025-3-24 09:36:28 | 显示全部楼层
发表于 2025-3-24 11:40:34 | 显示全部楼层
发表于 2025-3-24 16:07:36 | 显示全部楼层
Introduction a circle is geometric for . but not for ., while the property of being a conic or a straight line is geometric for both . and .. This point of view may be generalized to any subset . of any vector space . endowed with a group . acting on it..In this book, we only consider the group of rigid motions
发表于 2025-3-24 21:04:57 | 显示全部楼层
发表于 2025-3-25 00:35:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 12:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表