找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[复制链接]
查看: 53903|回复: 55
发表于 2025-3-21 17:25:45 | 显示全部楼层 |阅读模式
书目名称Generalized Curvatures
编辑Jean-Marie Morvan
视频video
概述First coherent and complete account of this subject in book form
丛书名称Geometry and Computing
图书封面Titlebook: Generalized Curvatures;  Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni
描述The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a g
出版日期Book 2008
关键词Gaussian curvature; Riemannian geometry; Riemannian manifold; computational geometry; computer graphics;
版次1
doihttps://doi.org/10.1007/978-3-540-73792-6
isbn_softcover978-3-642-09300-5
isbn_ebook978-3-540-73792-6Series ISSN 1866-6795 Series E-ISSN 1866-6809
issn_series 1866-6795
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Generalized Curvatures影响因子(影响力)




书目名称Generalized Curvatures影响因子(影响力)学科排名




书目名称Generalized Curvatures网络公开度




书目名称Generalized Curvatures网络公开度学科排名




书目名称Generalized Curvatures被引频次




书目名称Generalized Curvatures被引频次学科排名




书目名称Generalized Curvatures年度引用




书目名称Generalized Curvatures年度引用学科排名




书目名称Generalized Curvatures读者反馈




书目名称Generalized Curvatures读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:18 | 显示全部楼层
发表于 2025-3-22 02:18:01 | 显示全部楼层
发表于 2025-3-22 06:10:23 | 显示全部楼层
发表于 2025-3-22 12:24:14 | 显示全部楼层
Riemannian Submanifoldsect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
发表于 2025-3-22 13:12:29 | 显示全部楼层
发表于 2025-3-22 19:55:01 | 显示全部楼层
发表于 2025-3-23 01:11:11 | 显示全部楼层
The Steiner Formula for Convex Subsetshat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
发表于 2025-3-23 05:00:54 | 显示全部楼层
发表于 2025-3-23 05:35:39 | 显示全部楼层
Motivation: Curvesese invariants can be done. Our goal is to investigate a framework in which a geometric theory of both smooth and discrete objects is simultaneously possible. To motivate this work, we begin with two simple examples: the length and curvature of a curve.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 06:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表