找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Game Theory; A Multi-Leveled Appr Hans Peters Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Applications of Game Theory.N

[复制链接]
楼主: 乳钵
发表于 2025-3-30 11:54:38 | 显示全部楼层
f interest in game theory, including cooperative game theory.This book presents the basics of game theory both on an undergraduate level and on a more advanced mathematical level. It covers most topics of interest in game theory, including cooperative game theory. Part I presents introductions to al
发表于 2025-3-30 14:28:15 | 显示全部楼层
发表于 2025-3-30 20:24:42 | 显示全部楼层
https://doi.org/10.1007/978-3-7091-7529-3 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows how a matrix game can be solved – optimal strategies and the value of the game can be found – by solving an associated linear programming problem.
发表于 2025-3-30 22:16:37 | 显示全部楼层
Reaktionsbereitschaft des Organismus,the present chapter is largely self-contained..This chapter is based mainly on [147]. In Sect. 15.1 we briefly review symmetric two-player games. Section 15.2 discusses evolutionary stable strategies and Sect. 15.3 replicator dynamics.
发表于 2025-3-31 02:25:49 | 显示全部楼层
发表于 2025-3-31 08:55:07 | 显示全部楼层
Core, Shapley Value, and Weber Setvalue is an attractive core selection (Sect. 18.2). Finally, we study random order values (Sect. 18.3), which fill out the Weber set, and the subset of weighted Shapley values, which still cover the core (Sect. 18.4).
发表于 2025-3-31 11:34:07 | 显示全部楼层
https://doi.org/10.1007/978-3-642-48202-1 basics about refinements of Nash equilibrium. Section 13.7 is on correlated equilibrium in bimatrix games, and Sect. 13.8 concludes with an axiomatic characterization of Nash equilibrium based on a reduced game (consistency) condition.
发表于 2025-3-31 14:59:58 | 显示全部楼层
Diagnostik der Hautkrankheiten, mixed strategies. Section 14.3 is on Nash equilibrium and its main refinements, namely subgame perfect equilibrium and sequential equilibrium. For more about refinements and some relations with refinements of Nash equilibrium in strategic form games see [138] and [102].
发表于 2025-3-31 20:59:48 | 显示全部楼层
发表于 2025-3-31 21:45:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 11:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表