找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Game Theory; A Multi-Leveled Appr Hans Peters Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Applications of Game Theory.N

[复制链接]
楼主: 乳钵
发表于 2025-3-28 15:25:40 | 显示全部楼层
发表于 2025-3-28 21:10:17 | 显示全部楼层
发表于 2025-3-29 02:43:58 | 显示全部楼层
Die Statistik in der Vergangenheit]..In this chapter we consider two-person . repeated games and formulate Folk theorems both for subgame perfect and for Nash equilibrium. The approach is somewhat informal, and mainly based on examples. In Sect. 7.1 we consider subgame perfect equilibrium and in Sect. 7.2 we consider Nash equilibrium.
发表于 2025-3-29 04:30:38 | 显示全部楼层
Physikalische krankmachende Faktoren (Folge)ation as in Problem 9.13..In this chapter a few other cooperative game theory models are discussed: bargaining problems in Sect. 10.1, exchange economies in Sect. 10.2, matching problems in Sect. 10.3, and house exchange in Sect. 10.4.
发表于 2025-3-29 09:19:28 | 显示全部楼层
Finite Two-Person Gamespt of strict domination to facilitate computation of Nash equilibria and to compute equilibria also of larger games. The structure of this chapter thus parallels the structure of Chap. 2. For a deeper and more comprehensive analysis of finite two-person games see Chap. 13.
发表于 2025-3-29 13:14:51 | 显示全部楼层
发表于 2025-3-29 18:14:53 | 显示全部楼层
发表于 2025-3-29 22:53:55 | 显示全部楼层
Finite Two-Person Zero-Sum Gamesd in Sect. 1.3.1 belong to this class..In Sect. 2.1 the basic definitions and theory are discussed. Section 2.2 shows how to solve 2 × . and . × 2 games, and larger games by elimination of strictly dominated strategies.
发表于 2025-3-30 02:12:44 | 显示全部楼层
Matrix Games 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows how a matrix game can be solved – optimal strategies and the value of the game can be found – by solving an associated linear programming problem.
发表于 2025-3-30 07:27:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 10:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表