找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory of Linear Differential Equations; Marius Put,Michael F. Singer Book 2003 Springer-Verlag Berlin Heidelberg 2003 Arithmetic.A

[复制链接]
楼主: 游牧
发表于 2025-3-28 17:39:07 | 显示全部楼层
发表于 2025-3-28 19:57:07 | 显示全部楼层
Aktien-, Zins- und Währungsderivatehe involved analytic theory of Laplace and Borel transforms has been avoided. However, the link between the cohomology groups and the Laplace and Borel method is made transparent in examples. This way of presenting the theory is close to that of Malgrange [195].
发表于 2025-3-28 23:53:52 | 显示全部楼层
发表于 2025-3-29 03:19:03 | 显示全部楼层
发表于 2025-3-29 08:55:55 | 显示全部楼层
Differential Operators and Differential Modulesof . deg . above is . if . ≠ 0 and . = 0 for . > .. In the case . = 0 we define the degree to be −∞. The addition in . is obvious. The multiplication in . is completely determined by the prescribed rule δ. = .δ + .′. Since there exists an element . ∈ . with .′ ≠ 0, the ring . is not commutative. One calls . ..
发表于 2025-3-29 12:21:03 | 显示全部楼层
发表于 2025-3-29 17:29:27 | 显示全部楼层
发表于 2025-3-29 20:11:47 | 显示全部楼层
发表于 2025-3-29 23:58:09 | 显示全部楼层
Differential Operators and Differential Modulestative) ring . :=.[∂] consists of all expressions . :=.∂. + ⋯ + .∂ + . dot with . ∈ ., . ≥ 0 and all . ∈ .. These elements . are called .. The degree of . deg . above is . if . ≠ 0 and . = 0 for . > .. In the case . = 0 we define the degree to be −∞. The addition in . is obvious. The multiplication
发表于 2025-3-30 07:51:08 | 显示全部楼层
Formal Local Theory. Here . is an algebraically closed field of characteristic 0. For most of what follows the choice of the field . is immaterial. In the first two sections one assumes that . = .. This has the advantage that the roots of unity have the convenient description .λ with λ ∈ .. Moreover, for . = . one can
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 03:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表