找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory of Linear Differential Equations; Marius Put,Michael F. Singer Book 2003 Springer-Verlag Berlin Heidelberg 2003 Arithmetic.A

[复制链接]
楼主: 游牧
发表于 2025-3-26 21:00:22 | 显示全部楼层
发表于 2025-3-27 05:00:18 | 显示全部楼层
Algorithmic Considerations.(.) is the usual one, namely .. We, furthermore, assume that there are algorithms to perform the field operations in . as well as algorithms to factor polynomials over .(.) (see [102, 234] for a formalization of this concept). Natural choices for . are ., any number field or the algebraic closure of ..
发表于 2025-3-27 08:27:24 | 显示全部楼层
Monodromy, the Riemann-Hilbert Problem, and the Differential Galois Group matrix whose columns are the . independent solutions .,…, . then . is a fundamental matrix with entries in .({.−.}). One can normalize . such that .(.) is the identity matrix. The question we are interested in is:
发表于 2025-3-27 12:07:00 | 显示全部楼层
Moduli for Singular Differential Equationsion of moduli spaces for algebraic curves of a given genus . ≥ 1. In order to obtain a fine moduli space one has to consider curves of genus . with additional finite data, namely a suitable level structure. The corresponding moduli functor is then representable and is represented by a fine moduli space (see Proposition 12.3).
发表于 2025-3-27 16:39:24 | 显示全部楼层
发表于 2025-3-27 18:08:08 | 显示全部楼层
Aktienanalyse in drei Schrittenis closed under all operations of linear algebra, i.e., kernels, cokernels, direct sums, and tensor products. Then . is also a neutral tannakian category and equivalent to Repr. for some affine group scheme ..
发表于 2025-3-28 01:47:16 | 显示全部楼层
发表于 2025-3-28 05:40:00 | 显示全部楼层
发表于 2025-3-28 07:37:31 | 显示全部楼层
发表于 2025-3-28 11:05:12 | 显示全部楼层
0072-7830 tannakian categories that are used. .This volume will become a standard reference for all mathematicians in this area of mathematics, including graduate students..978-3-642-62916-7978-3-642-55750-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表