找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory of Linear Differential Equations; Marius Put,Michael F. Singer Book 2003 Springer-Verlag Berlin Heidelberg 2003 Arithmetic.A

[复制链接]
楼主: 游牧
发表于 2025-3-23 10:08:04 | 显示全部楼层
发表于 2025-3-23 16:21:53 | 显示全部楼层
https://doi.org/10.1007/978-3-322-83470-6or all of this material can be found in the classics of Kaplansky [151] and Kolchin [162] (and Kolchin’s original papers that have been collected in [25]) as well as the recent book of Magid [183] and the papers [231] and [173].
发表于 2025-3-23 21:15:54 | 显示全部楼层
发表于 2025-3-24 00:53:39 | 显示全部楼层
https://doi.org/10.1007/978-3-322-82612-1. Here . is an algebraically closed field of characteristic 0. For most of what follows the choice of the field . is immaterial. In the first two sections one assumes that . = .. This has the advantage that the roots of unity have the convenient description .λ with λ ∈ .. Moreover, for . = . one can
发表于 2025-3-24 04:14:07 | 显示全部楼层
发表于 2025-3-24 07:42:58 | 显示全部楼层
Spezialprobleme der Unternehmensbewertung,at are meromorphic functions on .. We assume that the equation is regular at every point .∈.. Thus, for any point .∈., the equation has . independent solutions .,…, . consisting of vectors with coordinates in .({.−.}). It is known ([132], chap. 9; [225], p. 5) that these solutions converge in a disk
发表于 2025-3-24 13:02:42 | 显示全部楼层
发表于 2025-3-24 15:23:09 | 显示全部楼层
Aktien-, Zins- und Währungsderivateect youthful and growing. In this chapter we treat the asymptotic theory of divergent solutions and the more refined theory of multisummation of those solutions. The theory of multisummation has been developed by many authors, such as W. Baiser, B.L.J. Braaksma, J. Écalle, W.B. Jurkat, D. Lutz, M. L
发表于 2025-3-24 21:32:43 | 显示全部楼层
Darstellung: Gewinn- & Verlust-Profile,ver .({.})) quasi-split equation δ−. that is isomorphic, over .((.)), to δ−. (cf. Proposition 3.41). This means that there is a . such that .. In the following, δ−., δ−., and . are fixed and the eigenvalues of δ−., δ−. are denoted by .,…, ..
发表于 2025-3-25 01:53:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表