找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[复制链接]
楼主: Recovery
发表于 2025-3-30 09:12:47 | 显示全部楼层
1431-0821 cessful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals..978-3-540-74120-6978-3-540-74311-8Series ISSN 1431-0821 Series E-ISSN 2512-5257
发表于 2025-3-30 15:43:15 | 显示全部楼层
发表于 2025-3-30 16:54:30 | 显示全部楼层
发表于 2025-3-30 21:17:15 | 显示全部楼层
Relativity,ield in the absence of matter. This equation was formulated by Einstein in 1915. A brief history of the development of Einstein’s field equation through quotes from early papers can be found in [Mi-Th-Wh] (pp. 431–434).
发表于 2025-3-31 03:10:51 | 显示全部楼层
Riemannian Functionals,suitable functional, called the action on the configuration space (cf. [Ab-Ma], [Arn]). Hilbert proved ([Hil]) that the equations of general relativity can be recovered from the action (math) (total scalar curvature). His paper contains prophetic ideas about the role played by the diffeomorphism gro
发表于 2025-3-31 08:07:34 | 显示全部楼层
Ricci Curvature as a Partial Differential Equation,erential operator. In other words, given a metric ., its Ricci curvature . is computed locally in terms of the first and second partial derivatives of .. We will think of . as prescribed and wish to investigate the properties of the metric. Some natural questions that arise are:
发表于 2025-3-31 09:12:05 | 显示全部楼层
发表于 2025-3-31 14:39:05 | 显示全部楼层
,Kähler-Einstein Metrics and the Calabi Conjecture,r Kähler, or locally homogeneous. On a complex manifold, one often gets Kähler-Einstein metrics by specific techniques. One reason is perhaps, in the Kähler case, the relative autonomy of the Ricci tensor with regard to the metric, once the complex structure is given. The Ricci tensor—or, to be prec
发表于 2025-3-31 20:33:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 06:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表