找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[复制链接]
楼主: Recovery
发表于 2025-3-25 05:33:51 | 显示全部楼层
Homogeneous Riemannian Manifolds,In this chapter, we sketch the general theory of homogeneous Riemannian manifolds and we use it to give some examples of (homogeneous) Einstein manifolds. Up to now, the general classification of homogeneous Einstein manifolds is not known even in the compact case. In particular, the following question is still an open problem.
发表于 2025-3-25 07:55:26 | 显示全部楼层
发表于 2025-3-25 13:09:56 | 显示全部楼层
Riemannian Submersions,The notion of . (see 1.70) has been intensively studied since the very beginning of Riemannian geometry. Indeed the first Riemannian manifolds to be studied were surfaces imbedded in R.. As a consequence, the differential geometry of Riemannian immersions is well known and available in many textbooks (see for example [Ko-No 1, 2], [Spi]).
发表于 2025-3-25 19:18:20 | 显示全部楼层
发表于 2025-3-25 20:19:44 | 显示全部楼层
发表于 2025-3-26 02:39:54 | 显示全部楼层
Arthur L. BesseIncludes supplementary material:
发表于 2025-3-26 06:28:31 | 显示全部楼层
发表于 2025-3-26 09:03:54 | 显示全部楼层
https://doi.org/10.1007/978-3-540-74311-8Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
发表于 2025-3-26 16:22:41 | 显示全部楼层
978-3-540-74120-6Springer-Verlag Berlin Heidelberg 1987
发表于 2025-3-26 18:46:48 | 显示全部楼层
Geburtshilfliche Operationslehref an infinity of small pieces of Euclidean spaces). In modern language, a Riemannian manifold (.) consists of the following data: a compact .. manifold . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 05:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表