找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[复制链接]
查看: 12808|回复: 58
发表于 2025-3-21 17:27:55 | 显示全部楼层 |阅读模式
书目名称Einstein Manifolds
编辑Arthur L. Besse
视频video
概述Includes supplementary material:
丛书名称Classics in Mathematics
图书封面Titlebook: Einstein Manifolds;  Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top
描述.Einstein‘s equations stem from General Relativity. In the context of Riemannian manifolds, an independent mathematical theory has developed around them. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals..
出版日期Book 1987
关键词Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
版次1
doihttps://doi.org/10.1007/978-3-540-74311-8
isbn_softcover978-3-540-74120-6
isbn_ebook978-3-540-74311-8Series ISSN 1431-0821 Series E-ISSN 2512-5257
issn_series 1431-0821
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

书目名称Einstein Manifolds影响因子(影响力)




书目名称Einstein Manifolds影响因子(影响力)学科排名




书目名称Einstein Manifolds网络公开度




书目名称Einstein Manifolds网络公开度学科排名




书目名称Einstein Manifolds被引频次




书目名称Einstein Manifolds被引频次学科排名




书目名称Einstein Manifolds年度引用




书目名称Einstein Manifolds年度引用学科排名




书目名称Einstein Manifolds读者反馈




书目名称Einstein Manifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:10:05 | 显示全部楼层
发表于 2025-3-22 01:51:53 | 显示全部楼层
发表于 2025-3-22 04:58:34 | 显示全部楼层
,Wärme- und Kälteversorgungsanlagen,Riemannian metrics. We do not distinguish between an Einstein metric . and equivalent tensor fields . = ., where φ is a diffeomorphism of ., and . a positive constant. In the sequel, the quotient space of Einstein metrics under this relation is called the . of Einstein structures on ., and . by ..
发表于 2025-3-22 09:38:15 | 显示全部楼层
https://doi.org/10.1007/978-3-662-28712-5it one may split 2-forms into . and . forms. This can be applied in particular to the middle cohomology of a compact four-manifold or to the curvature form of any bundle with connection over an oriented four-manifold.
发表于 2025-3-22 13:16:21 | 显示全部楼层
发表于 2025-3-22 18:30:10 | 显示全部楼层
Basic Material,ons of Riemannian (and pseudo-Riemannian) geometry. This is mainly intended to fix the definitions and notations that we will use in the book. As a consequence, many fundamental theorems will be quoted without proofs because these are available in classical textbooks on Riemannian geometry such as [Ch-Eb], [Hel 1], [Ko-No 1 and 2], [Spi].
发表于 2025-3-22 21:17:55 | 显示全部楼层
发表于 2025-3-23 04:11:31 | 显示全部楼层
发表于 2025-3-23 09:23:54 | 显示全部楼层
The Moduli Space of Einstein Structures,Riemannian metrics. We do not distinguish between an Einstein metric . and equivalent tensor fields . = ., where φ is a diffeomorphism of ., and . a positive constant. In the sequel, the quotient space of Einstein metrics under this relation is called the . of Einstein structures on ., and . by ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表