找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[复制链接]
楼主: 大破坏
发表于 2025-3-23 10:47:08 | 显示全部楼层
MANE: A Multi-cascade Adversarial Network Embedding Model for Anchor Link Predictions for correspondence matching. Extensive experiments on real-world social network datasets demonstrate that our method can achieve the expected performance, especially in improving the top-1 precision and recall.
发表于 2025-3-23 14:58:51 | 显示全部楼层
发表于 2025-3-23 20:27:30 | 显示全部楼层
GPSR: Graph Prompt for Session-Based Recommendation. Specifically, we first study the item transition pattern by constructing session graphs, based on which the GNN model is pretrained. Then, we introduce a universal prompt-based tuning method called Graph Prompt Feature (GPF), for adapting the pretrained GNN model to the downstream session-based re
发表于 2025-3-24 01:28:12 | 显示全部楼层
发表于 2025-3-24 03:07:35 | 显示全部楼层
Global Route Planning for Large-Scale Requests on Traffic-Aware Road Networkgroup them together. In this way, only the conflicts within each group need to be resolved in a local area, so the efficiency is improved. Additionally, several alternative paths are calculated and the global optimal routes are found in finite iterations. Extensive experiments conducted on real-worl
发表于 2025-3-24 10:05:58 | 显示全部楼层
发表于 2025-3-24 11:59:04 | 显示全部楼层
发表于 2025-3-24 17:51:03 | 显示全部楼层
发表于 2025-3-24 19:09:09 | 显示全部楼层
,Verzweigter Stromübertritt in die Erde,. Specifically, We use LightGCN to learn user and item embeddings, and then we combine multi-task learning with contrastive learning to explicitly exploit behavioral dependence in embeddings learning and capture differences between embeddings. We conduct comprehensive experiments on two real-world d
发表于 2025-3-25 00:01:13 | 显示全部楼层
https://doi.org/10.1007/978-3-662-41795-9ified heterogeneous graph, creating the heterogeneous view. We also construct the social relation enhanced view by resampling the user-item interaction graph. In the learning process, we leverage meta-path based graph learning and graph diffusion with attention to obtain multi-view embeddings for us
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 17:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表