找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[复制链接]
楼主: 大破坏
发表于 2025-3-25 04:12:24 | 显示全部楼层
发表于 2025-3-25 09:54:37 | 显示全部楼层
https://doi.org/10.1007/978-3-642-86621-0on encoder to encode each propagation. . then employs a propagation transformer module to make every propagation embedding interact and obtain the importance score of each propagation. . achieves the best performance on three real-world datasets. Further experiments show the propagation transformer
发表于 2025-3-25 12:28:43 | 显示全部楼层
发表于 2025-3-25 16:45:59 | 显示全部楼层
n. To facilitate user representation learning under sparse labels and insufficient features, we further propose self-supervised training specifically tailored for social networks with weak information. In the second stage, the cascade representations are learned using the multi-head self-attention n
发表于 2025-3-25 22:55:18 | 显示全部楼层
Positionen zu Arbeit und Technik, initially constructs a bias matrix for each user and item, calculates bias scores, and removes them from the raw rating data. Subsequently, the debiased data is fed into a GNN to learn users’ genuine preferences. Last, it reasonably combines biases and preferences to make predictions. We performed
发表于 2025-3-26 01:51:41 | 显示全部楼层
Handbuch der allgemeinen Pathologieferent classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the e
发表于 2025-3-26 08:17:53 | 显示全部楼层
,The Era of the Pioneers (1882 – 1898),ctive approach called RAP, which employs a two-stage learning framework. Specifically, in the first stage, we construct a weighted bipartite graph to model interaction’s confidence-score, which effectively blocks the spread of noise information in GNN. Furthermore, in the second stage, RAP introduce
发表于 2025-3-26 11:39:18 | 显示全部楼层
https://doi.org/10.1007/978-3-642-75757-0ring model training, which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive user recommendation. Our code is available at ..
发表于 2025-3-26 12:48:43 | 显示全部楼层
发表于 2025-3-26 18:27:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-27 17:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表