找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito

[复制链接]
查看: 28572|回复: 55
发表于 2025-3-21 19:33:17 | 显示全部楼层 |阅读模式
书目名称Database Systems for Advanced Applications
副标题29th International C
编辑Makoto Onizuka,Jae-Gil Lee,Kejing Lu
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Database Systems for Advanced Applications; 29th International C Makoto Onizuka,Jae-Gil Lee,Kejing Lu Conference proceedings 2024 The Edito
描述.The seven-volume set LNCS 14850-14856 constitutes the proceedings of the 29th International Conference on Database Systems for Advanced Applications, DASFAA 2024, held in Gifu, Japan, in July 2024...The total of 147 full papers, along with 85 short papers, presented together in this seven-volume set was carefully reviewed and selected from 722 submissions...Additionally, 14 industrial papers, 18 demo papers and 6 tutorials are included...The conference presents papers on subjects such as:..Part I: Spatial and temporal data; database core technology; federated learning...Part II: Machine learning; text processing...Part III: Recommendation; multi-media...Part IV: Privacy and security; knowledge base and graphs...Part V: Natural language processing; large language model; time series and stream data...Part VI: Graph and network; hardware acceleration...Part VII: Emerging application; industry papers; demo papers..
出版日期Conference proceedings 2024
关键词Cloud data management; Data mining and knowledge discovery; Data warehouse and OLAP; Databases for emer
版次1
doihttps://doi.org/10.1007/978-981-97-5572-1
isbn_softcover978-981-97-5571-4
isbn_ebook978-981-97-5572-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Database Systems for Advanced Applications影响因子(影响力)




书目名称Database Systems for Advanced Applications影响因子(影响力)学科排名




书目名称Database Systems for Advanced Applications网络公开度




书目名称Database Systems for Advanced Applications网络公开度学科排名




书目名称Database Systems for Advanced Applications被引频次




书目名称Database Systems for Advanced Applications被引频次学科排名




书目名称Database Systems for Advanced Applications年度引用




书目名称Database Systems for Advanced Applications年度引用学科排名




书目名称Database Systems for Advanced Applications读者反馈




书目名称Database Systems for Advanced Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:36 | 显示全部楼层
发表于 2025-3-22 02:17:28 | 显示全部楼层
Higher-Order Graph Contrastive Learning for Recommendationom the original graph to enhance supervisory signals. Specifically, we construct two contrasting views: higher-order and general views. In the higher-order view, we devise a high-order symmetric contrastive scheme to better explore higher-order dependencies. For the general view, the objective is to
发表于 2025-3-22 06:53:25 | 显示全部楼层
发表于 2025-3-22 11:44:43 | 显示全部楼层
发表于 2025-3-22 13:39:06 | 显示全部楼层
Multi-level Contrastive Learning on Weak Social Networks for Information Diffusion Predictionn. To facilitate user representation learning under sparse labels and insufficient features, we further propose self-supervised training specifically tailored for social networks with weak information. In the second stage, the cascade representations are learned using the multi-head self-attention n
发表于 2025-3-22 17:17:11 | 显示全部楼层
BiasRec: A General Bias-Aware Social Recommendation Model initially constructs a bias matrix for each user and item, calculates bias scores, and removes them from the raw rating data. Subsequently, the debiased data is fed into a GNN to learn users’ genuine preferences. Last, it reasonably combines biases and preferences to make predictions. We performed
发表于 2025-3-23 01:01:38 | 显示全部楼层
发表于 2025-3-23 03:12:28 | 显示全部楼层
发表于 2025-3-23 09:09:00 | 显示全部楼层
Learning Social Graph for Inactive User Recommendationring model training, which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58% on NDCG in inactive user recommendation. Our code is available at ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-13 10:17
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表