找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Korošec Book 2022 The Editor(s) (if

[复制链接]
楼主: 麻烦
发表于 2025-3-26 22:14:38 | 显示全部楼层
Andreas Argubi-Wollesen,Robert Weidner Statistical Comparison ranking scheme can be used for performance assessment of multi-objective stochastic optimization algorithms using a single-quality-indicator data. Next, different ensembles of quality indicators based on the Deep Statistical Comparison ranking scheme are introduced to reduce
发表于 2025-3-27 02:36:28 | 显示全部楼层
发表于 2025-3-27 09:12:54 | 显示全部楼层
Tome Eftimov,Peter KorošecPresents a comprehensive comparison of the performance of stochastic optimization algorithms.Includes an introduction to benchmarking and statistical analysis.Provides a web-based tool for making stat
发表于 2025-3-27 13:29:40 | 显示全部楼层
发表于 2025-3-27 16:56:09 | 显示全部楼层
发表于 2025-3-27 21:44:29 | 显示全部楼层
发表于 2025-3-28 00:17:03 | 显示全部楼层
发表于 2025-3-28 03:01:07 | 显示全部楼层
发表于 2025-3-28 08:54:23 | 显示全部楼层
发表于 2025-3-28 12:20:08 | 显示全部楼层
,Deep Statistical Comparison in Single-Objective Optimization,eep Statistical Comparison ranking scheme can be used for a performance assessment of single-objective stochastic optimization algorithms. Next, a practical Deep Statistical Comparison ranking scheme is introduced, followed by examples for testing whether the statistical significance presented in th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 06:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表