找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Korošec Book 2022 The Editor(s) (if

[复制链接]
楼主: 麻烦
发表于 2025-3-23 11:20:50 | 显示全部楼层
Book 2022es used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statis
发表于 2025-3-23 17:08:56 | 显示全部楼层
Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms978-3-030-96917-2Series ISSN 1619-7127 Series E-ISSN 2627-6461
发表于 2025-3-23 18:04:47 | 显示全部楼层
https://doi.org/10.1007/978-90-481-9106-2timization algorithm with the performances of other, state-of-the-art algorithms. Additionally, there is a brief explanation of all the chapters to enable the reader to become acquainted with the scientific content of the book.
发表于 2025-3-24 00:05:39 | 显示全部楼层
发表于 2025-3-24 05:26:23 | 显示全部楼层
发表于 2025-3-24 07:39:37 | 显示全部楼层
https://doi.org/10.1007/978-3-031-06916-1k. We give an overview of the basic terms used in statistics, starting with descriptive statistics and a special focus on hypothesis testing. At the end, we provide guidelines for which statistical test should be selected, depending on the benchmarking scenario that is analyzed.
发表于 2025-3-24 14:08:25 | 显示全部楼层
A Holistic Approach to School SuccessFirst, the most commonly used approach for a statistical comparison is presented, followed by a recently published approach, known as the Deep Statistical Comparison. Both approaches are discussed using benchmarking scenarios introduced in the statistical analysis chapter (i.e., the single-problem and multiple-problem scenarios).
发表于 2025-3-24 16:52:19 | 显示全部楼层
发表于 2025-3-24 21:26:31 | 显示全部楼层
发表于 2025-3-25 00:06:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 06:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表