找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms; Tome Eftimov,Peter Korošec Book 2022 The Editor(s) (if

[复制链接]
查看: 8932|回复: 39
发表于 2025-3-21 17:34:21 | 显示全部楼层 |阅读模式
书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
编辑Tome Eftimov,Peter Korošec
视频videohttp://file.papertrans.cn/265/264674/264674.mp4
概述Presents a comprehensive comparison of the performance of stochastic optimization algorithms.Includes an introduction to benchmarking and statistical analysis.Provides a web-based tool for making stat
丛书名称Natural Computing Series
图书封面Titlebook: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms;  Tome Eftimov,Peter Korošec Book 2022 The Editor(s) (if
描述Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios..The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:.Part I: Int
出版日期Book 2022
关键词Metaheuristics; Stochastic Optimization; Optimization; Benchmarking; Statistical Analysis; Multiobjective
版次1
doihttps://doi.org/10.1007/978-3-030-96917-2
isbn_softcover978-3-030-96919-6
isbn_ebook978-3-030-96917-2Series ISSN 1619-7127 Series E-ISSN 2627-6461
issn_series 1619-7127
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms影响因子(影响力)




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms影响因子(影响力)学科排名




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms网络公开度




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms网络公开度学科排名




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms被引频次




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms被引频次学科排名




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms年度引用




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms年度引用学科排名




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms读者反馈




书目名称Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:47:15 | 显示全部楼层
发表于 2025-3-22 01:34:01 | 显示全部楼层
发表于 2025-3-22 05:34:06 | 显示全部楼层
,Deep Statistical Comparison in Single-Objective Optimization,e data is also important in practice. Finally, an extended version of the Deep Statistical Comparison ranking scheme for handling high-dimensional data is introduced as well as its application for investigating the exploration and exploitation capabilities of the compared algorithms.
发表于 2025-3-22 10:27:28 | 显示全部楼层
发表于 2025-3-22 15:06:39 | 显示全部楼层
发表于 2025-3-22 21:03:16 | 显示全部楼层
https://doi.org/10.1007/978-3-031-06916-1e data is also important in practice. Finally, an extended version of the Deep Statistical Comparison ranking scheme for handling high-dimensional data is introduced as well as its application for investigating the exploration and exploitation capabilities of the compared algorithms.
发表于 2025-3-23 01:14:04 | 显示全部楼层
发表于 2025-3-23 02:34:28 | 显示全部楼层
发表于 2025-3-23 09:13:32 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 22:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表