找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee

[复制链接]
楼主: bradycardia
发表于 2025-3-26 21:53:57 | 显示全部楼层
发表于 2025-3-27 04:43:53 | 显示全部楼层
https://doi.org/10.1007/978-3-031-02472-6 supervised learning, we present a model with a set of correct answers, and then we permit it to predict unseen data. Now, let’s turn our attention a little. Imagine we have data with a set of variables and there is no independent variable of concern. In such a situation, we do not develop any plausible assumptions about a phenomenon.
发表于 2025-3-27 08:41:01 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-6870-4Machine Learning; Python; Data Science; Deep Neural Networks; Regression; Classification; Time Series Anal
发表于 2025-3-27 12:42:40 | 显示全部楼层
发表于 2025-3-27 16:55:46 | 显示全部楼层
An Introduction to Simple Linear Regression,echniques to help you understand data science from a broad perspective. Not only that, but it provides a theoretical, technical, and mathematical foundation for problem-solving using data science techniques.
发表于 2025-3-27 20:07:35 | 显示全部楼层
发表于 2025-3-27 22:18:48 | 显示全部楼层
Logistic Regression Analysis,entrated on the parametric method. In supervised learning, we present a model with a set of correct answers, and we then allow a model to predict unseen data. We use the parametric method to solve regression problems (when a dependent variable is a continuous variable).
发表于 2025-3-28 03:28:45 | 显示全部楼层
发表于 2025-3-28 08:17:59 | 显示全部楼层
Cluster Analysis, supervised learning, we present a model with a set of correct answers, and then we permit it to predict unseen data. Now, let’s turn our attention a little. Imagine we have data with a set of variables and there is no independent variable of concern. In such a situation, we do not develop any plausible assumptions about a phenomenon.
发表于 2025-3-28 14:07:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 11:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表