找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee

[复制链接]
查看: 34553|回复: 52
发表于 2025-3-21 19:37:32 | 显示全部楼层 |阅读模式
书目名称Data Science Revealed
副标题With Feature Enginee
编辑Tshepo Chris Nokeri
视频video
概述Covers the parametric, ensemble, and the non-parametric methods.Presents techniques to improve model performance in pre- and post-training.Summarizes H2O driverless AI and automatic forecasting using
图书封面Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee
描述.Get insight into data science techniques such as data engineering and visualization, statistical modeling, machine learning, and deep learning. This book teaches you how to select variables, optimize hyper parameters, develop pipelines, and train, test, and validate machine and deep learning models. Each chapter includes a set of examples allowing you to understand the concepts, assumptions, and procedures behind each model..The book covers parametric methods or linear models that combat under- or over-fitting using techniques such as Lasso and Ridge. It includes complex regression analysis with time series smoothing, decomposition, and forecasting. It takes a fresh look at non-parametric models for binary classification (logistic regression analysis) and ensemble methods such as decision trees, support vector machines, and naive Bayes. It covers the most popular non-parametric method for time-event data (the Kaplan-Meier estimator). It also covers ways of solving classification problems using artificial neural networks such as restricted Boltzmann machines, multi-layer perceptrons, and deep belief networks. The book discusses unsupervised learning clustering techniques such as th
出版日期Book 2021
关键词Machine Learning; Python; Data Science; Deep Neural Networks; Regression; Classification; Time Series Anal
版次1
doihttps://doi.org/10.1007/978-1-4842-6870-4
isbn_softcover978-1-4842-6869-8
isbn_ebook978-1-4842-6870-4
copyrightTshepo Chris Nokeri 2021
The information of publication is updating

书目名称Data Science Revealed影响因子(影响力)




书目名称Data Science Revealed影响因子(影响力)学科排名




书目名称Data Science Revealed网络公开度




书目名称Data Science Revealed网络公开度学科排名




书目名称Data Science Revealed被引频次




书目名称Data Science Revealed被引频次学科排名




书目名称Data Science Revealed年度引用




书目名称Data Science Revealed年度引用学科排名




书目名称Data Science Revealed读者反馈




书目名称Data Science Revealed读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:18:33 | 显示全部楼层
发表于 2025-3-22 03:16:57 | 显示全部楼层
发表于 2025-3-22 06:51:30 | 显示全部楼层
发表于 2025-3-22 12:13:43 | 显示全部楼层
发表于 2025-3-22 12:59:52 | 显示全部楼层
Finding Hyperplanes Using Support Vectors,nce matrices are equivalent. Although the classifier is one of the optimum linear classification models, it has its limits. Foremost, we cannot estimate the dependent variable using a categorical variable. Second, we train and test the model under strict assumptions of normality. This chapter brings
发表于 2025-3-22 19:14:24 | 显示全部楼层
发表于 2025-3-23 00:55:53 | 显示全部楼层
发表于 2025-3-23 04:59:02 | 显示全部楼层
发表于 2025-3-23 07:06:31 | 显示全部楼层
Neural Networks,ks. Second, we cover back propagation and forward propagation. Third, it presents different activation functions. Last, it builds and test a Restricted Boltzmann Machine and a multilayer perceptron using the SciKit-Learn package, followed by deep belief networks using the Keras package. To install K
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 02:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表