找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science Revealed; With Feature Enginee Tshepo Chris Nokeri Book 2021 Tshepo Chris Nokeri 2021 Machine Learning.Python.Data Science.Dee

[复制链接]
楼主: bradycardia
发表于 2025-3-28 17:59:26 | 显示全部楼层
http://image.papertrans.cn/d/image/263067.jpg
发表于 2025-3-28 19:41:05 | 显示全部楼层
发表于 2025-3-29 00:03:52 | 显示全部楼层
发表于 2025-3-29 05:42:44 | 显示全部楼层
Complex Systems and Their Applicationsates considerable errors when forecasting future instances of the series. For a fast and automated forecasting procedure, use Facebook’s Prophet; it forecasts time-series data based on nonlinear trends with seasonality and holiday effects. This chapter introduces Prophet and presents a way of develo
发表于 2025-3-29 09:33:07 | 显示全部楼层
Complex Systems and Their Applicationsentrated on the parametric method. In supervised learning, we present a model with a set of correct answers, and we then allow a model to predict unseen data. We use the parametric method to solve regression problems (when a dependent variable is a continuous variable).
发表于 2025-3-29 15:05:22 | 显示全部楼层
Complex Systems and Their Applicationsegression (MLR) is an extension of logistic regression using the Softmax function; instead of the Sigmoid function, it applies the cross-entropy loss function. It is a form of logistic regression used to predict a target variable with more than two classes. It differs from linear discriminant analys
发表于 2025-3-29 18:25:12 | 显示全部楼层
发表于 2025-3-29 21:26:53 | 显示全部楼层
发表于 2025-3-29 23:56:41 | 显示全部楼层
Claudio García-Grimaldo,Eric Campos-Cantóninary and multiclass classification problems. The word . derives from the assumption that the model makes about the data. We consider it naïve because it assumes that variables are independent of each other, meaning there is no dependency on the data. This rarely occurs in the actual world. We can r
发表于 2025-3-30 05:24:54 | 显示全部楼层
https://doi.org/10.1007/978-3-031-02472-6 supervised learning, we present a model with a set of correct answers, and then we permit it to predict unseen data. Now, let’s turn our attention a little. Imagine we have data with a set of variables and there is no independent variable of concern. In such a situation, we do not develop any plaus
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 11:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表