找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)

[复制链接]
楼主: fasten
发表于 2025-3-23 10:51:41 | 显示全部楼层
发表于 2025-3-23 17:05:31 | 显示全部楼层
发表于 2025-3-23 19:09:04 | 显示全部楼层
发表于 2025-3-23 23:10:01 | 显示全部楼层
Charakteristika des Baumarktes,and compared with those of seasonal ARIMA and VEC models. The comparison results show that recurrent neural networks (i.e., long short-term memory and gated recurrent unit networks) can provide higher accuracies in forecasting the long-term variations of HCS than statistical linear time series models based on typical error measures.
发表于 2025-3-24 02:49:43 | 显示全部楼层
Construction Time Series Forecasting Using Multivariate Time Series Models,s compared with the results of the univariate seasonal ARIMA model. The comparison results show that the VEC model outperforms the seasonal autoregressive integrated moving average (SARIMA) model based on typical error measures.
发表于 2025-3-24 09:44:39 | 显示全部楼层
发表于 2025-3-24 13:09:51 | 显示全部楼层
Textbook 2023tion. The book maximizes students’ understanding of the necessary theoretical background of data analytics, and explains the implementation of data analytics techniques to solve the actual problems in the construction industry. . ..
发表于 2025-3-24 16:06:26 | 显示全部楼层
发表于 2025-3-24 21:47:51 | 显示全部楼层
发表于 2025-3-24 23:17:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 13:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表