找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)

[复制链接]
查看: 51418|回复: 35
发表于 2025-3-21 16:42:12 | 显示全部楼层 |阅读模式
书目名称Construction Analytics
副标题Forecasting and Inve
编辑Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K
视频videohttp://file.papertrans.cn/237/236040/236040.mp4
概述Illustrates theoretical explanations of construction analytics, hands-on practices, and R codes for analytics techniques.Enables readers to investigate the problems in the construction industry such a
图书封面Titlebook: Construction Analytics; Forecasting and Inve Mohsen Shahandashti,Bahram Abediniangerabi,Sooin K Textbook 2023 The Editor(s) (if applicable)
描述This text covers R program coding for the implementation of two essential data analytics for practical construction problems. The first part of this book explains time series basics, models, and forecasting approaches in the context of the construction industry, accompanied by practical examples in construction. The second part describes the concept of investment valuation for construction projects and provides both deterministic and probabilistic techniques to conduct investment valuation on construction projects. R code scripts are provided in this book for solving practical problems in the construction industry. This book is also equipped with an R Package entitled “cdar” to provide the necessary functions for performing investment valuation. The book maximizes students’ understanding of the necessary theoretical background of data analytics, and explains the implementation of data analytics techniques to solve the actual problems in the construction industry. . ..
出版日期Textbook 2023
关键词Construction Analytics; Construction Forecasting; Construction Investment Valuation; Construction Manag
版次1
doihttps://doi.org/10.1007/978-3-031-27292-9
isbn_softcover978-3-031-27294-3
isbn_ebook978-3-031-27292-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Construction Analytics影响因子(影响力)




书目名称Construction Analytics影响因子(影响力)学科排名




书目名称Construction Analytics网络公开度




书目名称Construction Analytics网络公开度学科排名




书目名称Construction Analytics被引频次




书目名称Construction Analytics被引频次学科排名




书目名称Construction Analytics年度引用




书目名称Construction Analytics年度引用学科排名




书目名称Construction Analytics读者反馈




书目名称Construction Analytics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:04 | 显示全部楼层
发表于 2025-3-22 01:41:00 | 显示全部楼层
Mohsen Shahandashti,Bahram Abediniangerabi,Sooin KIllustrates theoretical explanations of construction analytics, hands-on practices, and R codes for analytics techniques.Enables readers to investigate the problems in the construction industry such a
发表于 2025-3-22 07:11:09 | 显示全部楼层
http://image.papertrans.cn/c/image/236040.jpg
发表于 2025-3-22 11:30:12 | 显示全部楼层
https://doi.org/10.1007/978-3-322-88550-0nhance construction productivity, and reduce construction cost overruns. Although data analytics have tremendous potential to improve strategic decision-making in the construction industry as an ever-increasing volume of data becomes available, it has not been fully exploited on a larger scale in th
发表于 2025-3-22 15:51:06 | 显示全部楼层
发表于 2025-3-22 18:30:18 | 显示全部楼层
https://doi.org/10.1007/978-3-322-88557-9struction time series data have not shown a constant variance. The volatility of a construction time series variable over time is challenging for accurate forecasting and risk management. This chapter discusses two time series volatility models (i.e., ARCH and GARCH) to forecast the variance of a co
发表于 2025-3-22 22:22:36 | 显示全部楼层
https://doi.org/10.1007/978-3-322-88557-9ls. This chapter explains the process of identifying the leading indicators of a construction time series and developing proper multivariate models, such as vector error correction and vector autoregressive models for forecasting them. Several practical examples are provided along with R codes to sh
发表于 2025-3-23 02:17:34 | 显示全部楼层
发表于 2025-3-23 06:11:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 13:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表