找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computationally Efficient Model Predictive Control Algorithms; A Neural Network App Maciej Ławryńczuk Book 2014 Springer International Publ

[复制链接]
楼主: Jejunum
发表于 2025-3-25 03:27:25 | 显示全部楼层
发表于 2025-3-25 10:55:35 | 显示全部楼层
发表于 2025-3-25 12:52:51 | 显示全部楼层
发表于 2025-3-25 15:49:26 | 显示全部楼层
MPC Algorithms Based on Neural State-Space Models,t trajectory and with the output set-point trajectory. Simulation results are concerned with the polymerisation reactor introduced in the previous chapter. It is assumed that all state variables can be measured, but in practice some of them may be unavailable and an observer must be used.
发表于 2025-3-25 20:53:30 | 显示全部楼层
发表于 2025-3-26 01:56:37 | 显示全部楼层
Cooperation between MPC Algorithms and Set-Point Optimisation Algorithms,ion. Three control structures with on-line linearisation for set-point optimisation are presented next: the multi-layer structure with steady-state target optimisation, the integrated structure and the structure with predictive optimiser and constraint supervisor. Implementation details are given for three classes of neural models.
发表于 2025-3-26 07:57:04 | 显示全部楼层
https://doi.org/10.1007/978-0-387-76537-2hms with neural approximation are also presented. They are very computationally efficient, because the neural approximator directly finds on-line the coefficients of the control law, successive on-line linearisation and calculations typical of the classical MPC algorithms are not necessary.
发表于 2025-3-26 11:31:12 | 显示全部楼层
MPC Algorithms with Neural Approximation,hms with neural approximation are also presented. They are very computationally efficient, because the neural approximator directly finds on-line the coefficients of the control law, successive on-line linearisation and calculations typical of the classical MPC algorithms are not necessary.
发表于 2025-3-26 16:01:05 | 显示全部楼层
发表于 2025-3-26 18:33:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 20:18
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表