找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computationally Efficient Model Predictive Control Algorithms; A Neural Network App Maciej Ławryńczuk Book 2014 Springer International Publ

[复制链接]
楼主: Jejunum
发表于 2025-3-26 22:31:44 | 显示全部楼层
MPC Algorithms Based on Neural Hammerstein and Wiener Models,not need the inverse of the steady-state part. Modelling abilities of cascade neural models are demonstrated for a polymerisation process, properties of the presented MPC algorithms are compared in the control systems of two processes.
发表于 2025-3-27 04:36:13 | 显示全部楼层
MPC Algorithms Based on Neural Multi-Models,s for the consecutive sampling instants of the prediction horizon. The structure of the neural multi-model is discussed in this chapter, implementation details of the MPC-NO algorithm and some suboptimal MPC schemes are given.
发表于 2025-3-27 08:48:22 | 显示全部楼层
发表于 2025-3-27 09:49:44 | 显示全部楼层
Maciej ŁawryńczukPresents recent research in Computationally Efficient Model Predictive Control Algorithms.Focuses on a Neural Network Approach for Model Predictive Control.Written by an expert in the field
发表于 2025-3-27 17:42:01 | 显示全部楼层
发表于 2025-3-27 17:59:14 | 显示全部楼层
Power Electronics and Power Systemsed. The general classification of MPC algorithms is given, i.e. linear and nonlinear approaches are characterised. Next, some methods which make it possible to reduce computational burden of nonlinear MPC algorithms are shortly described, including the on-line linearisation approach. A history of MP
发表于 2025-3-28 01:40:13 | 显示全部楼层
发表于 2025-3-28 03:05:16 | 显示全部楼层
https://doi.org/10.1007/978-3-319-50584-8i-input multi-output models are discussed and implementation details of three algorithms introduced in the previous chapter are given (MPCNO, MPC-NPL and MPC-NPLPT schemes are considered). Additionally, the MPC algorithms with simplified linearisation, which is possible due to special structures of
发表于 2025-3-28 08:05:51 | 显示全部楼层
发表于 2025-3-28 11:01:33 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 20:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表