找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Abelian Varieties; Christina Birkenhake,Herbert Lange Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Abelian varie

[复制链接]
楼主: choleric
发表于 2025-3-30 10:17:43 | 显示全部楼层
Toru Fukubayashi,Tetsuya Ogawa,Mako Fukano = ℂ./∧ with . a lattice in ℂ.. The complex torus . is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ℂ.. A meromorphic function on ℂ., periodic with respect to ., may be considered as a function on .. An. is a complex torus admitting suffic
发表于 2025-3-30 15:59:00 | 显示全部楼层
发表于 2025-3-30 20:07:11 | 显示全部楼层
https://doi.org/10.1007/978-3-540-88590-0omplex torus to be an abelian variety. They were given by Riemann in the special case of the Jacobian variety of a curve (see Chapter 11). For the general statement we refer to Poincaré-Picard [1] and Frobenius [2], although it was apparently known to Riemann and Weierstraß. Another characterization
发表于 2025-3-30 21:51:43 | 显示全部楼层
Current Role for Ultrasonography,te dimensional ℚ-algebra. If moreover . is an abelian variety, any polarization . induces an anti-involution . ↦ .′ on ..(.), called the .. It is the adjoint operator with respect to the hermitian form .. (.).
发表于 2025-3-31 01:41:00 | 显示全部楼层
发表于 2025-3-31 05:27:07 | 显示全部楼层
发表于 2025-3-31 12:14:28 | 显示全部楼层
James R. A. Smith,Rouin Amirfeyze take a slightly naive point of view of the notion of “moduli space”: a . of abelian varieties with some additional structure means a complex analytic space or a complex manifold whose points are in some natural one to one correspondence with the elements of the set. We disregard uniqueness and fun
发表于 2025-3-31 17:23:18 | 显示全部楼层
发表于 2025-3-31 19:52:02 | 显示全部楼层
Erin M. Dean MD,Susan N. Ishikawa MDre many books on elliptic curves, we do not say anything about them, but refer to Hulek [1] and the literature quoted there. This chapter deals with the next interesting case, namely abelian varieties of dimension two, called ..
发表于 2025-3-31 23:52:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 21:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表