找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Abelian Varieties; Christina Birkenhake,Herbert Lange Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Abelian varie

[复制链接]
楼主: choleric
发表于 2025-3-25 06:30:12 | 显示全部楼层
Haruki Odagiri,Stéphane Guillo,Thomas Bauere are essentially two methods to employ a group . of automorphisms in order to decompose an abelian variety .: If . is cyclic, one can use the set of fixed points of ., and for an arbitrary group . the rational representation algebra ℚ[.], for decomposing . up to isogeny.
发表于 2025-3-25 09:27:52 | 显示全部楼层
发表于 2025-3-25 11:42:14 | 显示全部楼层
发表于 2025-3-25 19:52:23 | 显示全部楼层
发表于 2025-3-25 21:28:43 | 显示全部楼层
Introduction, different constants ... If . = deg . is 1 or 2, an explicit integration by elementary functions is well known from calculus. If . = 3 or 4, integration is possible using elliptic functions. If however . ≥ 5, no explicit integration is known in general.
发表于 2025-3-26 01:06:59 | 显示全部楼层
Complex Tori, = ℂ./∧ with . a lattice in ℂ.. The complex torus . is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ℂ.. A meromorphic function on ℂ., periodic with respect to ., may be considered as a function on .. An. is a complex torus admitting suffic
发表于 2025-3-26 05:08:43 | 显示全部楼层
Line Bundles on Complex Tori,s that .(.) is an extension of the Néron-Severi group .(.) by the group .(Λ, ℂ.) of characters of Λ with values in the circle group ℂ.. The group .(.) turns out to be the group of hermitian forms . on . satisfying Im . (., .) ⊆ ℤ. The theorem was proven for dimension 2 by Humbert [1] applying a resu
发表于 2025-3-26 12:30:31 | 显示全部楼层
发表于 2025-3-26 15:17:21 | 显示全部楼层
发表于 2025-3-26 18:27:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 21:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表