找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Abelian Varieties; Christina Birkenhake,Herbert Lange Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004 Abelian varie

[复制链接]
楼主: choleric
发表于 2025-3-23 10:00:39 | 显示全部楼层
发表于 2025-3-23 15:39:04 | 显示全部楼层
发表于 2025-3-23 18:21:34 | 显示全部楼层
0072-7830 The theory of abelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern l
发表于 2025-3-24 00:20:09 | 显示全部楼层
Kathrin Steffen,Lars Engebretsen turns out to be the group of hermitian forms . on . satisfying Im . (., .) ⊆ ℤ. The theorem was proven for dimension 2 by Humbert [1] applying a result of Appell [1] and by Lefschetz [1] in general. The present formulation appears in Weil [3] and Mumford [2].
发表于 2025-3-24 02:58:36 | 显示全部楼层
Richard A. Marder MD,George J. Lian MDutomorphisms of ℙ.. In fact, .(.) is the largest group of translations with this property. This leads to a projective representation .: .(.) → ..(ℂ), with respect to which the embedding .. is equivariant. It will be an important tool in the investigation of the geometric properties of the embedded abelian variety ..(.) in ℙ..
发表于 2025-3-24 07:15:35 | 显示全部楼层
发表于 2025-3-24 13:29:40 | 显示全部楼层
Line Bundles on Complex Tori, turns out to be the group of hermitian forms . on . satisfying Im . (., .) ⊆ ℤ. The theorem was proven for dimension 2 by Humbert [1] applying a result of Appell [1] and by Lefschetz [1] in general. The present formulation appears in Weil [3] and Mumford [2].
发表于 2025-3-24 15:35:05 | 显示全部楼层
发表于 2025-3-24 21:44:37 | 显示全部楼层
发表于 2025-3-25 02:13:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 21:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表