找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[复制链接]
查看: 22166|回复: 62
发表于 2025-3-21 17:40:35 | 显示全部楼层 |阅读模式
书目名称Classical and Quantum Dynamics
副标题from Classical Paths
编辑Walter Dittrich,Martin Reuter
视频video
图书封面Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe
描述In the past 10 to 15 years, the quantum leap inunderstanding of nonlineardynamics has radically changedthe frame of reference of physicists contemplating suchsystems. This book treats classical and quantummechanicsusing an approach as introduced by nonlinearHamiltoniandynamics and path integral methods. It is written forgraduate students who want to become familiar with the moreadvancedcomputational strategies in classical and quantumdynamics. Therefore,worked examples comprise a large partof the text. While the first half ofthe book lays thegroundwork for a standard course, the second half, with itsdetailed treatment of the time-dependent oscillator,classical andquantum Chern-Simons mechanics, the Maslovanomaly and the Berry phase, willacquaint the reader withmodern topological methods that have not as yetfound theirway into the textbook literature.
出版日期Textbook 19921st edition
关键词Pfadintegrale; Quantenmechanik; classical mechanics; dynamics; halbklassische Quantisierung; klassische M
版次1
doihttps://doi.org/10.1007/978-3-642-97921-7
isbn_ebook978-3-642-97921-7
copyrightSpringer-Verlag Berlin Heidelberg 1992
The information of publication is updating

书目名称Classical and Quantum Dynamics影响因子(影响力)




书目名称Classical and Quantum Dynamics影响因子(影响力)学科排名




书目名称Classical and Quantum Dynamics网络公开度




书目名称Classical and Quantum Dynamics网络公开度学科排名




书目名称Classical and Quantum Dynamics被引频次




书目名称Classical and Quantum Dynamics被引频次学科排名




书目名称Classical and Quantum Dynamics年度引用




书目名称Classical and Quantum Dynamics年度引用学科排名




书目名称Classical and Quantum Dynamics读者反馈




书目名称Classical and Quantum Dynamics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:16 | 显示全部楼层
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ϑ, then Jacobi’s principle states:
发表于 2025-3-22 00:29:35 | 显示全部楼层
发表于 2025-3-22 06:30:27 | 显示全部楼层
The KAM Theorem,ator .(θ., .) converges (according to Newton’s procedure) and thus the invariant tori are not destroyed. The KAM theorem is valid for systems with two and more degrees of freedom. However, in the following, we shall deal exclusively with the case of two degrees of freedom.
发表于 2025-3-22 12:32:20 | 显示全部楼层
http://image.papertrans.cn/c/image/227162.jpg
发表于 2025-3-22 15:06:36 | 显示全部楼层
发表于 2025-3-22 18:57:48 | 显示全部楼层
A Classification-based Review RecommenderWe begin this chapter by deriving a few laws of nonconservation in mechanics. To this end we first consider the change of the action under rigid space translation δ. = δε. and δ.(.) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or
发表于 2025-3-23 00:12:55 | 显示全部楼层
A kernel extension to handle missing dataWe already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (., .) to 2. constant values (., .), e.g., to the 2. initial values (., .) at time . = 0. Then the problem would be solved, . = .(., ., .), . = .(.,., .).
发表于 2025-3-23 05:20:37 | 显示全部楼层
Max Bramer,Richard Ellis,Miltos PetridisWe shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity .. Let gravitation be neglected, and the collisions with the walls be elastic. If . denotes the average force onto each wall, then we have
发表于 2025-3-23 06:54:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 03:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表