找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[复制链接]
楼主: Grant
发表于 2025-3-30 08:15:34 | 显示全部楼层
发表于 2025-3-30 15:55:53 | 显示全部楼层
发表于 2025-3-30 20:34:56 | 显示全部楼层
Action-Angle Variables,necessarily . = α.. But the . are, like the α., constants. On the other hand, . develops linear with time: . with constants . = .(.) and β.. The transformation equations which are associated with the above canonical transformation generated by .(., .) are given by
发表于 2025-3-30 20:58:19 | 显示全部楼层
发表于 2025-3-31 02:50:45 | 显示全部楼层
The Action Principles in Mechanics,.. , ., are points in .-dimensional configuration space. Thus .(.) describes the motion of the system, and . determines its velocity along the path in configuration space. The endpoints of the trajectory are given by .(.) = ., and .(.) = ..
发表于 2025-3-31 08:20:03 | 显示全部楼层
Jacobi Fields, Conjugate Points,particular, we want to investigate the conditions under which a path is a minimum of the action and those under which it is merely an extremum. For illustrative purposes we consider a particle in two-dimensional real space. If we parametrize the path between points . and . by ϑ, then Jacobi’s princi
发表于 2025-3-31 09:57:05 | 显示全部楼层
发表于 2025-3-31 14:56:50 | 显示全部楼层
Action-Angle Variables, .) is the generator of a canonical transformation to new constant momenta . (all . are ignorable), and the new Hamiltonian depends only on the .: . = . = .(.). Besides, the following canonical equations are valid: . The . are . independent functions of the . integration constants α., i.e., are not
发表于 2025-3-31 20:30:20 | 显示全部楼层
发表于 2025-4-1 01:36:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 03:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表