找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Quantum Dynamics; from Classical Paths Walter Dittrich,Martin Reuter Textbook 19921st edition Springer-Verlag Berlin Heidelbe

[复制链接]
楼主: Grant
发表于 2025-3-23 10:53:16 | 显示全部楼层
Max Bramer,Miltos Petridis,Adrian HopgoodHere we are dealing with an especially fast converging perturbation series, which is of particular importance for the proof of the KAM theorem (cf. below).
发表于 2025-3-23 15:19:27 | 显示全部楼层
发表于 2025-3-23 18:58:23 | 显示全部楼层
Dalila Boughaci,Louiza Slaouti,Kahina AchourWe now want to compute the kernel .(., .) for a few simple Lagrangians. We have already found for the one-dimensional case that . with
发表于 2025-3-24 01:02:39 | 显示全部楼层
https://doi.org/10.1007/978-1-4471-2318-7Until now we have always used a trick to calculate the path integral in
发表于 2025-3-24 03:59:28 | 显示全部楼层
Veronica E. Arriola-Rios,Jeremy WyattHere is another important example of a path integral calculation, namely the time-dependent oscillator whose Lagrangian is given by
发表于 2025-3-24 09:08:37 | 显示全部楼层
发表于 2025-3-24 14:03:32 | 显示全部楼层
Application of the Action Principles,We begin this chapter by deriving a few laws of nonconservation in mechanics. To this end we first consider the change of the action under rigid space translation δ. = δε. and δ.(.) = 0. Then the noninvariant part of the action, . is given by . and thus it immediately follows for the variation of . that . or
发表于 2025-3-24 16:05:09 | 显示全部楼层
The Hamilton-Jacobi Equation,We already know that canonical transformations are useful for solving mechanical problems. We now want to look for a canonical transformation that transforms the 2. coordinates (., .) to 2. constant values (., .), e.g., to the 2. initial values (., .) at time . = 0. Then the problem would be solved, . = .(., ., .), . = .(.,., .).
发表于 2025-3-24 20:37:03 | 显示全部楼层
The Adiabatic Invariance of the Action Variables,We shall first use an example to explain the concept of adiabatic invariance. Let us consider a “super ball” of mass ., which bounces back and forth between two walls (distance .) with velocity .. Let gravitation be neglected, and the collisions with the walls be elastic. If . denotes the average force onto each wall, then we have
发表于 2025-3-25 01:30:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 03:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表