找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2024 The

[复制链接]
楼主: expenditure
发表于 2025-3-25 05:45:26 | 显示全部楼层
发表于 2025-3-25 08:35:08 | 显示全部楼层
发表于 2025-3-25 13:24:10 | 显示全部楼层
Explainable Machine Learning for Categorical and Mixed Data with Lossless Visualizationdesigned for numeric data. This work focuses on developing numeric coding schemes for non-numeric attributes for ML algorithms to support accurate and explainable ML models, methods for lossless visualization of n-D non-numeric categorical data with visual rule discovery in these visualizations, and
发表于 2025-3-25 18:41:48 | 显示全部楼层
发表于 2025-3-25 22:26:34 | 显示全部楼层
Visual Knowledge Discovery with General Line Coordinates methods already exist, these methods are often unexplainable or perform poorly on complex data. This paper proposes Visual Knowledge Discovery approaches based on several forms of lossless General Line Coordinates. These are an expansion of the previously introduced General Line Coordinates Linear
发表于 2025-3-26 02:23:18 | 显示全部楼层
发表于 2025-3-26 04:53:29 | 显示全部楼层
发表于 2025-3-26 12:18:54 | 显示全部楼层
Computation of Pixel-Oriented Grid Layout for 2D Datasets Using VRGridod, we propose a novel post-processing algorithm called VRGrid which allows the arrangement of any two-dimensional data in a grid while minimizing disformation of the input data. This method can be used with popular but overlap-prone projection methods such as t-SNE or MDS to obtain overlap-free and
发表于 2025-3-26 13:55:06 | 显示全部楼层
发表于 2025-3-26 16:49:25 | 显示全部楼层
Road Traffic Flow Prediction with Visual Analyticsprediction can help improve traffic management, reduce congestion and pollution, and increase road safety. Mitigation solutions are usually used to soften the impact of this problem in most cities. In particular, the city of Lisbon has taken measures to reduce pollution by closing areas of the city
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 09:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表