找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2024 The

[复制链接]
查看: 50310|回复: 55
发表于 2025-3-21 18:29:12 | 显示全部楼层 |阅读模式
期刊全称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery
影响因子2023Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi
视频video
发行地址Provides recent research on Artificial Intelligence, Visualization, Visual Knowledge Discovery, and Visual Analytics.Is devoted to AI and Visualization‘for advancing Visual Knowledge Discover.Contains
学科分类Studies in Computational Intelligence
图书封面Titlebook: Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery;  Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2024 The
影响因子.This book continues a series of Springer publications devoted to the emerging field of Integrated Artificial Intelligence and Machine Learning with Visual Knowledge Discovery and Visual Analytics that combine advances in both fields. Artificial Intelligence and Machine Learning face long-standing challenges of explainability and interpretability that underpin trust.  Such attributes are fundamental to both decision-making and knowledge discovery.  Models are approximations and, at best, interpretations of reality that are transposed to algorithmic form.   A visual explanation paradigm is critically important to address such challenges, as current studies demonstrate in salience analysis in deep learning for images and texts.  Visualization means are generally effective for discovering and explaining high-dimensional patterns in all high-dimensional data, while preserving data properties and relations in visualizations is challenging.  Recent developments, such as in General Line Coordinates, open new opportunities to address such challenges..This book contains extended papers presented in 2021 and 2022 at the International Conference on Information Visualization (IV) on AI and Vis
Pindex Book 2024
The information of publication is updating

书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery影响因子(影响力)




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery影响因子(影响力)学科排名




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery网络公开度




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery网络公开度学科排名




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery被引频次




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery被引频次学科排名




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery年度引用




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery年度引用学科排名




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery读者反馈




书目名称Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:16:36 | 显示全部楼层
发表于 2025-3-22 00:56:05 | 显示全部楼层
Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery978-3-031-46549-9Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-22 07:56:40 | 显示全部楼层
Boris Kovalerchuk,Kawa Nazemi,Ebad BanissiProvides recent research on Artificial Intelligence, Visualization, Visual Knowledge Discovery, and Visual Analytics.Is devoted to AI and Visualization‘for advancing Visual Knowledge Discover.Contains
发表于 2025-3-22 10:59:06 | 显示全部楼层
发表于 2025-3-22 14:17:18 | 显示全部楼层
Factorization and Riccati Equationsss. Decision Trees (DTs) are essential in machine learning because they are used to understand many black box ML models including Deep Learning models. In this research, two new methods for creation and enhancement with complete visualizing Decision Trees as understandable models are suggested. Thes
发表于 2025-3-22 18:36:14 | 显示全部楼层
发表于 2025-3-22 22:28:16 | 显示全部楼层
Factorization of Measurable Matrix Functionsdesigned for numeric data. This work focuses on developing numeric coding schemes for non-numeric attributes for ML algorithms to support accurate and explainable ML models, methods for lossless visualization of n-D non-numeric categorical data with visual rule discovery in these visualizations, and
发表于 2025-3-23 05:06:15 | 显示全部楼层
发表于 2025-3-23 05:39:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 02:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表