找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Artificial Intelligence and Visualization: Advancing Visual Knowledge Discovery; Boris Kovalerchuk,Kawa Nazemi,Ebad Banissi Book 2024 The

[复制链接]
楼主: expenditure
发表于 2025-3-28 17:25:55 | 显示全部楼层
发表于 2025-3-28 19:26:20 | 显示全部楼层
发表于 2025-3-29 02:13:05 | 显示全部楼层
发表于 2025-3-29 06:54:25 | 显示全部楼层
Relative Confusion Matrix: An Efficient Visualization for the Comparison of Classification Modelsiminated classes and problematic classes of a single classifier, the very few works leverage the matrix structure of this visualization to compare several models at a class scale. In this paper, we present the Relative Confusion Matrix (RCM), a matrix-based visualization leveraging a color encoding
发表于 2025-3-29 10:51:19 | 显示全部楼层
Road Traffic Flow Prediction with Visual Analyticsedictive model. The model uses XGBoost to create a short-term time delay estimation for a region-of-interest. We find that our approach is able to achieve high Mean Squared Error (R.) results and low Mean Absolute Error (MAE). Additionally, we perform a user study to assess the quality of traffic fl
发表于 2025-3-29 13:58:47 | 显示全部楼层
发表于 2025-3-29 19:23:03 | 显示全部楼层
Integrating Machine Learning in Visual Analytics for Supporting Collaboration in Scienceons, visual exploration, and stimuli promotion for the different stages of collaborative writing. Our research into collaborative research applications also led us to examine the adverse effects of multitasking and multi-application usage on researchers. These effects on human cognition require the
发表于 2025-3-29 20:21:44 | 显示全部楼层
发表于 2025-3-30 01:04:46 | 显示全部楼层
Designing and Evaluating Context-Sensitive Visualization Models for Deep Learning Text Classifierso gauge the usefulness of the extracted insights for explaining the models. Additionally, visualizing discrepancies in the knowledge extracted by different models becomes crucial for effective ranking purposes. This is an area of research with very few available results. In this work, we investigate
发表于 2025-3-30 05:38:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 03:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表