找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 4th International Wo Carole H. Sudre,Christian F. Baumgartner,Will

[复制链接]
查看: 29419|回复: 52
发表于 2025-3-21 18:11:47 | 显示全部楼层 |阅读模式
书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
副标题4th International Wo
编辑Carole H. Sudre,Christian F. Baumgartner,William M
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 4th International Wo Carole H. Sudre,Christian F. Baumgartner,Will
描述This book constitutes the refereed proceedings of the Fourth Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2022, held in conjunction with MICCAI 2022. The conference was hybrid event held from Singapore. For this workshop, 13 papers from 22 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.
出版日期Conference proceedings 2022
关键词artificial intelligence; bayesian; bayesian networks; bioinformatics; computer vision; deep learning; imag
版次1
doihttps://doi.org/10.1007/978-3-031-16749-2
isbn_softcover978-3-031-16748-5
isbn_ebook978-3-031-16749-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging影响因子(影响力)学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging网络公开度学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging被引频次学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging年度引用学科排名




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈




书目名称Uncertainty for Safe Utilization of Machine Learning in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:58:45 | 显示全部楼层
发表于 2025-3-22 02:40:42 | 显示全部楼层
发表于 2025-3-22 05:34:40 | 显示全部楼层
https://doi.org/10.1007/978-3-031-16749-2artificial intelligence; bayesian; bayesian networks; bioinformatics; computer vision; deep learning; imag
发表于 2025-3-22 09:56:51 | 显示全部楼层
发表于 2025-3-22 13:26:14 | 显示全部楼层
Luke Whitbread,Mark JenkinsonThis book is a collection of Ed Freeman’s most influential and important works on stakeholder theory as well as business ethics, humanities, and capitalism..978-3-031-04566-0978-3-031-04564-6Series ISSN 0925-6733 Series E-ISSN 2215-1680
发表于 2025-3-22 20:31:32 | 显示全部楼层
Matthew Baugh,Jeremy Tan,Athanasios Vlontzos,Johanna P. Müller,Bernhard Kainzroximate model is established as an efficient method for RCS estimation of phased arrays. This book presents a detailed formulation of approximate method to determine RCS of phased arrays, which is explained us978-981-287-753-6978-981-287-754-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
发表于 2025-3-22 22:36:45 | 显示全部楼层
发表于 2025-3-23 04:08:48 | 显示全部楼层
发表于 2025-3-23 06:11:38 | 显示全部楼层
Uncertainty Categories in Medical Image Segmentation: A Study of Source-Related Diversitythat should be captured whenever uncertainties are used. We take the well characterised BraTS challenge dataset to demonstrate that there are substantial differences in both magnitude and spatial pattern of uncertainties from the different categories, and discuss the implications of these in various
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 09:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表