找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging; 4th International Wo Carole H. Sudre,Christian F. Baumgartner,Will

[复制链接]
楼主: 请回避
发表于 2025-3-23 11:43:41 | 显示全部楼层
On the Pitfalls of Entropy-Based Uncertainty for Multi-class Semi-supervised Segmentationed solution on a challenging multi-class segmentation dataset and in two well-known uncertainty-based segmentation methods. The reported results demonstrate that by simply replacing the mechanism used to compute the uncertainty, our proposed solution brings consistent improvements.
发表于 2025-3-23 15:37:01 | 显示全部楼层
What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?sults for uncertain region findings on medical image datasets while only requiring one extra inference from a pre-trained model and short iteration of attack. We expect our novel findings can provide insights for future medical image segmentation problems where detection of subtle variations (e.g.,
发表于 2025-3-23 21:51:22 | 显示全部楼层
Improved Post-hoc Probability Calibration for Out-of-Domain MRI Segmentationodel is tested on cardiac MRI segmentation datasets that contain unseen imaging artifacts and images from an unseen imaging protocol. We demonstrate reduced calibration errors compared with the state-of-the-art calibration algorithm.
发表于 2025-3-24 01:30:13 | 显示全部楼层
发表于 2025-3-24 03:51:27 | 显示全部楼层
发表于 2025-3-24 06:49:34 | 显示全部楼层
Joint Paraspinal Muscle Segmentation and Inter-rater Labeling Variability Prediction with Multi-taskdicting inter-rater labeling variability visualized using a variance map of three raters’ annotations. Our technique is validated on MRIs of paraspinal muscles at four different disc levels from 118 LBP patients. Benefiting from the transformer mechanism and convolution neural networks, our algorith
发表于 2025-3-24 11:31:59 | 显示全部楼层
Information Gain Sampling for Active Learning in Medical Image Classificationes including the diversity based CoreSet and uncertainty based maximum entropy sampling. Specifically, AEIG achieves . of overall performance with only 19% of the training data, while other active learning approaches require around 25%. We show that, by careful design choices, our model can be integ
发表于 2025-3-24 15:31:14 | 显示全部楼层
发表于 2025-3-24 21:16:57 | 显示全部楼层
发表于 2025-3-25 00:00:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 10:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表