找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Smoothness Priors Analysis of Time Series; Genshiro Kitagawa,Will Gersch Book 1996 Springer Science+Business Media New York 1996 Likelihoo

[复制链接]
楼主: 加冕
发表于 2025-3-27 00:19:00 | 显示全部楼层
发表于 2025-3-27 01:35:34 | 显示全部楼层
发表于 2025-3-27 06:43:33 | 显示全部楼层
Genshiro Kitagawa,Will Gersch a 3D convolutional neural network trained on T1w brain MRIs to identify the subset of genetically high-risk individuals with a substantially lower brain age than chronological age, which we interpret as resilient to neurodegeneration. We used association rule learning to identify sets of lifestyle
发表于 2025-3-27 12:26:16 | 显示全部楼层
发表于 2025-3-27 15:39:20 | 显示全部楼层
发表于 2025-3-27 20:01:22 | 显示全部楼层
发表于 2025-3-28 00:05:11 | 显示全部楼层
Genshiro Kitagawa,Will Gerschredict white matter hyperintensities from a registered pair of T1 and T2-weighted postmortem MRI scans of five Unet architectures: the original Unet, DoubleUNet, Attention UNet, Multiresolution UNet, and a new architecture specifically designed for the task. A detailed comparison between these five
发表于 2025-3-28 03:34:40 | 显示全部楼层
Genshiro Kitagawa,Will Gerschedicting brain age. Remarkably, the relationship between bone and gray matter, as well as the volume of cerebrospinal fluid, were identified as the most pivotal features for precise brain age estimation. To summarize, our proposed methodology exhibits encouraging potential for predicting brain age u
发表于 2025-3-28 09:09:54 | 显示全部楼层
Genshiro Kitagawa,Will Gerschrain age, leading to more anatomically driven and interpretable results, and thus confirming relevant literature which suggests that the ventricles and the hippocampus are the areas that are most informative. In addition, we leverage this knowledge in order to improve the overall performance on the
发表于 2025-3-28 14:25:02 | 显示全部楼层
Genshiro Kitagawa,Will Gerschbutions. To tackle this frequent scenario of inherently imbalanced, spatially skewed data sets, we propose a novel, anatomically-driven approach by using a multi-scale and multi-input 3D Convolutional Neural Network (CNN). We apply our model to 214 subjects (83 patients, 131 controls) who underwent
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-3 21:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表