找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Smoothness Priors Analysis of Time Series; Genshiro Kitagawa,Will Gersch Book 1996 Springer Science+Business Media New York 1996 Likelihoo

[复制链接]
查看: 49638|回复: 57
发表于 2025-3-21 16:07:14 | 显示全部楼层 |阅读模式
书目名称Smoothness Priors Analysis of Time Series
编辑Genshiro Kitagawa,Will Gersch
视频videohttp://file.papertrans.cn/870/869166/869166.mp4
丛书名称Lecture Notes in Statistics
图书封面Titlebook: Smoothness Priors Analysis of Time Series;  Genshiro Kitagawa,Will Gersch Book 1996 Springer Science+Business Media New York 1996 Likelihoo
描述.Smoothness Priors Analysis of Time Series. addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.
出版日期Book 1996
关键词Likelihood; Smooth function; Time series; Variance; calculus; classification; data analysis; differential e
版次1
doihttps://doi.org/10.1007/978-1-4612-0761-0
isbn_softcover978-0-387-94819-5
isbn_ebook978-1-4612-0761-0Series ISSN 0930-0325 Series E-ISSN 2197-7186
issn_series 0930-0325
copyrightSpringer Science+Business Media New York 1996
The information of publication is updating

书目名称Smoothness Priors Analysis of Time Series影响因子(影响力)




书目名称Smoothness Priors Analysis of Time Series影响因子(影响力)学科排名




书目名称Smoothness Priors Analysis of Time Series网络公开度




书目名称Smoothness Priors Analysis of Time Series网络公开度学科排名




书目名称Smoothness Priors Analysis of Time Series被引频次




书目名称Smoothness Priors Analysis of Time Series被引频次学科排名




书目名称Smoothness Priors Analysis of Time Series年度引用




书目名称Smoothness Priors Analysis of Time Series年度引用学科排名




书目名称Smoothness Priors Analysis of Time Series读者反馈




书目名称Smoothness Priors Analysis of Time Series读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:53 | 显示全部楼层
Genshiro Kitagawa,Will Gerschr morphological substrates. Many studies have investigated the problem from an eigendecomposition viewpoint, however, few have taken a deep learning viewpoint, even less studies have been engaged within the framework of graph neural networks (GNNs). As deep learning has produced significant results
发表于 2025-3-22 03:31:40 | 显示全部楼层
Genshiro Kitagawa,Will Gersch-care. Patient characteristics such as age, motor and pupil responsiveness, hypoxia and hypotension, and radiological findings on computed tomography (CT), have been identified as important variables for TBI outcome prediction. CT is the acute imaging modality of choice in clinical practice because
发表于 2025-3-22 04:41:47 | 显示全部楼层
Genshiro Kitagawa,Will Gerschdisease and related dementias (ADRD). Some proportion of ADRD risk may be modifiable through lifestyle. Certain lifestyle factors may be associated with slower brain atrophy rates, even for individuals at high genetic risk for dementia. Here, we evaluated 44,100 T1-weighted brain MRIs and detailed l
发表于 2025-3-22 11:07:54 | 显示全部楼层
发表于 2025-3-22 15:48:48 | 显示全部楼层
Genshiro Kitagawa,Will Gersche biological functions and health conditions of the brain. However, general and flexible deep-learning-based tools that can provide this information in humans . are limited. For instance, the state-of-the-art deep-learning-based source separation method in quantitative susceptibility mapping (QSM) d
发表于 2025-3-22 20:56:13 | 显示全部楼层
发表于 2025-3-22 22:10:25 | 显示全部楼层
发表于 2025-3-23 01:35:23 | 显示全部楼层
发表于 2025-3-23 06:39:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-3 20:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表